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Chapter 1

First-Order Differential
Equations

1.1 Terminology and Separable Equations

1. The differential equation is separable because it can be written

3y2 dy

dx
= 4x,

or, in differential form,

3y2 dy = 4x dx.

Integrate to obtain

y3 = 2x2 + k.

This implicitly defines a general solution, which can be written explicitly
as

y = (2x2 + k)1/3,

with k an arbitrary constant.

3. If cos(y) 6= 0, the differential equation is

y

dx
=

sin(x+ y)

cos(y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(y)

= sin(x) + cos(x) tan(y).

There is no way to separate the variables in this equation, so the differen-
tial equation is not separable.

1
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2 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

5. The differential equation can be written

x
dy

dx
= y2 − y,

or
1

y(y − 1)
dy =

1

x
dx,

and is therefore separable. Separating the variables assumes that y 6= 0
and y 6= 1. We can further write(

1

y − 1
− 1

y

)
dy =

1

x
dx.

Integrate to obtain

ln |y − 1| − ln |y| = ln |x|+ k.

Using properties of the logarithm, this is

ln
∣∣∣y − 1

xy

∣∣∣ = k.

Then
y − 1

xy
= c,

with c = ek constant. Solve this for y to obtain the general solution

y =
1

1− cx
.

y = 0 and y = 1 are singular solutions because these satisfy the differential
equation, but were excluded in the algebra of separating the variables.

7. The equation is separable because it can be written in differential form as

sin(y)

cos(y)
dy =

1

x
dx.

This assumes that x 6= 0 and cos(y) 6= 0. Integrate this equation to obtain

− ln | cos(y)| = ln |x|+ k.

This implicitly defines a general solution. From this we can also write

sec(y) = cx

with c constant.

The algebra of separating the variables required that cos(y) 6= 0. Now
cos(y) = 0 if y = (2n+1)π/2, with n any integer. Now y = (2n+1)π/2 also
satisfies the original differential equation, so these are singular solutions.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 3

9. The differential equation is

dy

dx
= ex − y + sin(y),

and this is not separable. It is not possible to separate all terms involving
x on one side of the equation and all terms involving y on the other.

11. If y 6= −1 and x 6= 0, we obtain the separated equation

y2

y + 1
dy =

1

x
dx.

To make the integration easier, write this as(
y − 1 +

1

1 + y

)
dy =

1

x
dx.

Integrate to obtain

1

2
y2 − y + ln |1 + y| = ln |x|+ c.

This implicitly defines a general solution. The initial condition is y(3e2) =
2, so put y = 2 and x = 3e2 to obtain

2− 2 + ln(3) = ln(3e2) + c.

Now
ln(3e2) = ln(3) + ln(e2) = ln(3) + 2,

so
ln(3) = ln(3) + 2 + c.

Then c = −2 and the solution of the initial value problem is implicitly
defined by

1

2
y2 − y + ln |1 + y| = ln |x| − 2.

13. With ln(yx) = x ln(y), we obtain the separated equation

ln(y)

y
dy = 3x dx.

Integrate to obtain
(ln(y))2 = 3x2 + c.

For y(2) = e3, we need

(ln(e3))2 = 3(4) + c,

or 9 = 12 + c. Then c = −3 and the solution of the initial value problem
is defined by

(ln(y))2 = 3x2 − 3.
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4 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Solve this to obtain the explicit solution

y = e
√

3(x2−1)

if |x| > 1.

15. Separate the variables to obtain

y cos(3y) dy = 2x dx.

Integrate to get
1

3
y sin(3y) +

1

9
cos(3y) = x2 + c,

which implicitly defines a general solution. For y(2/3) = π/3, we need

1

3

π

3
sin(π) +

1

9
cos(π) =

4

9
+ c.

This reduces to

−1

9
=

4

9
+ c,

so c = −5/9 and the solution of the initial value problem is implicitly
defined by

1

3
y sin(3y) +

1

9
cos(3y) = x2 − 5

9
,

or
3y sin(3y) + cos(3y) = 9x2 − 1.

17. Suppose the thermometer was removed from the house at time t = 0, and
let T (t) be the temperature function. Let A be the ambient temperature
outside the house (assumed constant). By Newton’s law,

T ′(t) = k(t−A).

We are also given that T (0) = 70 and T (5) = 60. Further, fifteen minutes
after being removed from the house, the thermometer reads 50.4, so

T (15) = 50.4.

We want to determine A, the constant outside temperature. From the
differential equation for T ,

1

T −A
dT = kdt.

Integrate this, as we have done before, to get

T (t) = A+ cekt.

Now,
T (0) = 70 = A+ c,
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 5

so c = 70−A and
T (t) = A+ (70−A)ekt.

Now use the other two conditions:

T (5) = A+ (70−A)e5k = 15.5 and T (15) = A+ (70−A)e15k = 50.4.

From the equation for T (5), solve for e5k to get

e5k =
60−A
70−A

.

Then

e15k =
(
e5k
)3

=

(
60−A
70−A

)3

.

Substitute this into the equation T (15) to get

(70−A)

(
60−A
70−A

)3

= 50.4−A.

Then
(60−A)3 = (50.4−A)(70−A)2.

The cubic terms cancel and this reduces to the quadratic equation

10.4A2 − 1156A+ 30960 = 0,

with roots 45 and (approximately) 66.15385. Clearly the outside temper-
ature must be less than 50, and must therefore equal 45 degree.

19. The problem is like Problem 18, and we find that the amount of Uranium-
235 at time t is

U(t) = 10

(
1

2

)t/(4.5(109))

,

with t in years. Then

U(109) = 10

(
1

2

)1/4.5

≈ 8.57 kg.

21. Let

I(x) =

∫ ∞
0

e−t
2−(x/t)2 dt.

The integral we want is I(3). Compute

I ′(x) = −2x

∫ ∞
0

1

t2
e−t

2−(x/t)2 dt.

Let u = x/t, so t = x/u and

dt = − x

u2
du.
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6 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Then

I ′(x) = −2x

∫ 0

∞

(
u2

x2

)
e−(x/u)2−u2−x

u2
du

= −2I(x).

Then I(x) satisfies the separable differential equation I ′ = −2I, with
general solution of the form I(x) = ce−2x. Now observe that

I(0) =

∫ ∞
0

e−t
2

dt =

√
π

2
= c,

in which we used a standard integral that arises often in statistics. Then

I(x) =

√
π

2
e−2x.

Finally, put x = 3 for the particular integral of interest:

I(3) =

∫ ∞
0

e−t
2−(9/t)2 dt =

√
π

2
e−6.

23. With a and b as given, and p0 = 3, 929, 214 (the population in 1790), the
logistic population function for the United States is

P (t) =
123, 141.5668

0.03071576577 + 0.0006242342283e0.03134t
e0.03134t.

If we attempt an exponential model Q(t) = Aekt, then take A = Q(0) =
3, 929, 214, the population in 1790. To find k, use the fact that

Q(10) = 5308483 = 3929214e10k

and we can solve for k to get

k =
1

10
ln

(
5308483

3929214

)
≈ 0.03008667012.

The exponential model, using these two data points (1790 and 1800 pop-
ulations), is

Q(t) = 3929214e0.03008667012t.

Table 1.1 uses Q(t) and P (t) to predict later populations from these two
initial figures. The logistic model remains quite accurate until about 1960,
at which time it loses accuracy quickly. The exponential model becomes
quite inaccurate by 1870, after which the error becomes so large that it
is not worth computing further. Exponential models do not work well
over time with complex populations, such as fish in the ocean or countries
throughout the world.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 7

year population P (t) percent error Q(t) percent error
1790 3,929,213 3,929,214 0 3,929,214 0
1800 5,308,483 5,336,313 0.52 5,308,483 0
1810 7,239,881 7,228,171 -0.16 7,179,158 -0.94
1820 9,638,453 9,757,448 1.23 7,179,158 0.53
1830 12,886,020 13,110,174 1.90 13,000,754 1.75
1840 17,169,453 17,507,365 2.57 17,685,992 3.61
1850 23,191,876 23.193,639 0.008 23,894,292 3.03
1860 31,443,321 30,414,301 -3.27 32,281,888 2.67
1870 38,558,371 39,374,437 2.12 43,613,774 13.11
1880 50,189,209 50,180,383 -0.018 58,923,484 17.40
1890 62,979766 62,772,907 -0.33 79,073,491 26.40
1900 76,212,168 76,873,907 0.87 107,551,857 41.12
1910 92,228,496 91,976,297 -0.27 145,303,703 57.55
1920 106,021,537 107,398,941 1.30 196,312,254 83.16
1930 123,202,624 122,401,360 -0.65
1940 132,164,569 136,329,577 3.15
1950 151,325,798 148,679,224 -1.75
1960 179,323,175 150,231,097 -11.2
1970 203,302,031 167,943,428 -17.39
1980 226,547,042 174,940,040 -22.78

Table 1.1: Census data for Problem 23
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8 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

1.2 The Linear First-Order Equation

1. With p(x) = −3/x, and integrating factor is

e
∫

(−3/x) dx = e−3 ln(x) = x−3

for x > 0. Multiply the differential equation by x−3 to get

x−3y′ − 3x−4 = 2x−1.

or
d

dx
(x−3y) =

2

x
.

Integrate to get
x−3y = 2 ln(x) + c,

with c an arbitrary constant. For x > 0 we have a general solution

y = 2x3 ln(x) + cx3.

In the last integration, we can allow x < 0 by replacing ln(x) with ln |x|
to derive the solution

y = 2x3 ln |x|+ cx3

for x 6= 0.

3. e
∫

2 dx = e2x is an integrating factor. Multiply the differential equation by
e2x:

y′e2x + 2ye2x = xe2x,

or
(e2xy)′ = xe2x.

Integrate to get

e2xy =
1

2
xe2x − 1

4
e2x + c.

giving us the general solution

y =
1

2
x− 1

4
+ ce−2x.

5. First determine the integrating factor

e
∫
−2 dx = e−2x.

Multiply the differential equation by e−2x to get

(e−2xy)′ = −8x2e−2x.

Integrate to get

e−2xy =

∫
−8x2e−2x dx = 4x2e−2x + 4xe−2x + 2e−2x + c.

This yields the general solution

y = 4x2 + 4x+ 2 + ce2x.
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1.2. THE LINEAR FIRST-ORDER EQUATION 9

7. x− 2 is an integrating factor for the differential equation because

e
∫

(1/(x−2)) dx = eln(x−2) = x− 2.

Multiply the differential equation by x− 2 to get

((x− 2)y)′ = 3x(x− 2).

Integrate to get
(x− 2)y = x3 − 3x2 + c.

This gives us the general solution

y =
1

x− 2
(x3 − 3x2 + c).

Now we need
y(3) = 27− 27 + c = 4,

so c = 4 and the solution of the initial value problem is

y =
1

x− 2
(x3 − 3x2 + 4).

9. First derive the integrating factor

e
∫

(2/(x+1)) dx = e2 ln(x+1) = eln((x+1)2) = (x+ 1)2.

Multiply the differential equation by (x+ 1)2 to obtain(
(x+ 1)2y

)′
= 3(x+ 1)2.

Integrate to obtain
(x+ 1)2y = (x+ 1)3 + c.

Then
y = x+ 1 +

c

(x+ 1)2
.

Now
y(0) = 1 + c = 5

so c = 4 and the initial value problem has the solution

y = x+ 1 +
4

(x+ 1)2
.

11. Let (x, y) be a point on the curve. The tangent line at (x, y) must pass
through (0, 2x2), and so has slope

y′ =
y − 2x2

x
.
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10 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

This is the linear differential equation

y′ − 1

x
y = −2x.

An integrating factor is

e−
∫

(1/x) dx = e− ln(x) = eln(1/x) =
1

x
,

so multiply the differential equation by 1/x to get

1

x
y′ − 1

x2
y = −2.

This is (
1

x
y

)′
= −2.

Integrate to get
1

x
y = −2x+ c.

Then
y = −2x2 + cx,

in which c can be any number.

13. Let A1(t) and A2(t) be the number of pounds of salt in tanks 1 and 2,
respectively, at time t. Then

A′1(t) =
5

2
− 5A1(t)

100
;A1(0) = 20

and

A′2(t) =
5A1(t)

100
− 5A2(t)

150
;A2(0) = 90.

Solve the linear initial value problem for A1(t) to get

A1(t) = 50− 30e−t/20.

Substitute this into the differential equation for A2(t) to get

A′2 +
1

30
A2 =

5

2
− 3

2
e−t/20;A2(0) = 90.

Solve this linear problem to obtain

A2(t) = 75 + 90e−t/20 − 75e−t/30.

Tank 2 has its minimum when A′2(t) = 0, and this occurs when

2.5e−t/30 − 4.5e−t/20 = 0.

This occurs when et/60 = 9/5, or t = 60 ln(9/5). Then

A2(t)min = A2(60 ln(9/5)) =
5450

81

pounds.
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1.3. EXACT EQUATIONS 11

1.3 Exact Equations

In these problems it is assumed that the differential equation has the form
M(x, y) +N(x, y)y′ = 0, or, in differential form, M(x, y) dx+N(x, y) dy = 0.

1. With M(x, y) = 2y2 + yexy and N(x, y) = 4xy + xexy + 2y. Then

∂N

∂x
= 4y + exy + xyexy =

∂M

∂y

for all (x, y), so the differential equation is exact on the entire plane. A
potential function ϕ(x, y) must satisfy

∂ϕ

∂x
= M(x, y) = 2y2 + yexy

and
∂ϕ

∂y
= N(x, y) = 4xy + xexy + 2y.

Choose one to integrate. If we begin with ∂ϕ/∂x = M , then integrate
with respect to x to get

ϕ(x, y) = 2xy2 + exy + α(y),

with α(y) the “constant” of integration with respect to x. Then we must
have

∂ϕ

∂y
= 4xy + xexy + α′(y) = 4xy + xexy + 2y.

This requires that α′(y) = 2y, so we can choose α(y) = y2 to obtain the
potential function

ϕ(x, y) = 2xy2 + exy + y2.

The general solution is defined implicitly by the equation

2xy2 + exy + y2 = c, ,

with c an arbitrary constant.

3. ∂M/∂y = 4x + 2x2 and ∂N/∂x = 4x, so this equation is not exact (on
any rectangle).

5. ∂M/∂y = 1 = ∂N/∂x, for x 6= 0, so this equation is exact on the plane
except at points (0, y). Integrate ∂ϕ/∂x = M or ∂ϕ/∂y = N to find the
potential function

ϕ(x, y) = ln |x|+ xy + y3

for x 6= 0. The general solution is defined by an equation

ln |x|+ xy + y3 = k.
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12 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

7. For this equation to be exact, we need

∂M

∂y
= 6xy2 − 3 =

∂N

∂x
= −3− 2αxy2.

This will be true if α = −3. By integrating, we find a potential function

ϕ(x, y) = x2y3 − 3xy − 3y2

and a general solution is defined implicitly by

x2y3 − 3xy − 3y2 = k.

9. Because ∂M/∂y = 12y2 = ∂N/∂x, this equation is exact for all (x, y).
Straightforward integrations yield the potential function

ϕ(x, y) = 3xy4 − x.

A general solution is defined implicitly by

3xy4 − x = k.

To satisfy the condition y(1) = 2, we must choose k so that

48− 1 = k,

so k = 47 and the solution of the initial value problem is specified by the
equation

3xy4 − x = 47.

In this case we can actually write this solution explicitly with y in terms
of x.

11. First,
∂M

∂y
= −2x sin(2y − x)− 2 cos(2y − x) =

∂N

∂x
,

so the differential equation is exact for all (x, y). For a potential function,
integrate

∂ϕ

∂y
= −2x cos(2y − x)

with respect to y to get

ϕ(x, y) = −x sin(2y − x) + c(x).

Then we must have

∂ϕ

∂x
= x cos(2y − x)− sin(2y − x)

= x cos(2y − x)− sin(2y − x) + c′(x).
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1.3. EXACT EQUATIONS 13

Then c′(x) = 0 and we can take c(x) to be any constant. Choosing c(x) = 0
yields

ϕ(x, y) = −x sin(2y − x).

The general solution is defined implicitly by

−x sin(2y − x) = k.

To satisfy y(π/12) = π/8, we need

− π

12
sin(π/6) = k,

so choose k = −π/24 to obtain the solution defined by

−x sin(2y − x) = − π

24

which of course is the same as

x sin(2y − x) =
π

24
.

We can also write

y =
1

2

(
x+ arcsin

( π

24x

))
for x 6= 0.

13. ϕ+ c is also a potential function if ϕ is because

∂ϕ

∂x
=
∂(ϕ+ c)

∂x

and
∂ϕ

∂y
=
∂(ϕ+ c)

∂y
.

The function defined implicitly by

ϕ(x, y) = k

is the same as that defined by

ϕ(x, y) + c = k

if k is arbitrary.

15. First,
∂M

∂y
= x− 3

2
y−5/2 and

∂N

∂x
= 2x.

and these are not equal on any rectangle in the plane.

In differential form, the differential equation is

(xy + y−3/2) dx+ x2 dy = 0.
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14 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Multiply this equation by xayb to get

(xa+1yb+1 + xayb−3/2) dx+ xa+2yb dy = 0 = M∗ dx+N∗ dy.

For this to be exact, we need

∂M∗

∂y
= (b+ 1)xa+1yb +

(
(b− 3

2

)
xayb−5/2

=
∂N∗

∂x
= (a+ 2)xa+1yb.

Divide this equation by xayb to get

(b+ 1)x+

(
b− 3

2

)
y−5/2 = (a+ 2)x.

This will hold for all x and y if we let b = 3/2 and then choose a and b so
that b+ 1 = a+ 2. Thus choose

a =
1

2
and b =

3

2

to get the integrating factor µ(x, y) = x1/2b3/2. Multiply the original
differential equation by this to get

(x3/2y5/2 + x1/2) dx+ x5/2y1/2 dy = 0.

To find a potential function, integrate

∂ϕ

∂y
= x5/2y3/2

with respect to y to get

ϕ(x, y) =
2

5
x5/2y5/2 + c(x).

Then we need

∂ϕ

∂x
= x3/2y5/2 + c′(x) = x3/2y5/2 + x1/2.

Therefore c′(x) = x1/2, so c(x) = 2x3/2/3 and

ϕ(x) =
2

5
x5/2y5/2 +

2

3
x3/2.

The general solution of the original differential equation is given implicitly
by

2

5
(xy)5/2 +

2

3
x3/2 = k.

In this we must have x 6= 0 and y 6= 0 to ensure that the integrating factor
µ(x, y) 6= 0.
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1.4. HOMOGENEOUS, BERNOULLI AND RICCATI EQUATIONS 15

1.4 Homogeneous, Bernoulli and Riccati Equa-
tions

1. This is a Riccati equation and one solution (by inspection) is S(x) = x.
Let y = x+ 1/z to obtain

2− 1

z2
z′ =

1

x2

(
x+

1

z

)2

− 1

x

(
x+

1

z

)
+ 1.

This simplifies to

z′ +
1

x
z = − 1

x2
,

a linear equation with integrating factor

e
∫

(1/x) dx = eln(x) = x.

The differential equation for z can therefore be written

(xz)′ = − 1

x
.

Integrate to get
xz = − ln(x) + c,

so

z = − ln(x)

x
+
c

x
=
c− ln(x)

x
.

for x > 0. Then

y = x+
1

z
= x+

x

c− ln(x)

for x > 0.

3. This is a Bernoulli equation with α = 2, so let v = y1−α = y−1 for y 6= 0
and y = 1/v. Compute

y′ =
dy

dv

dv

dx
= − 1

v2
xv′.

The differential equation becomes

− 1

v2
v′ +

x

v
=

x

v2
.

This is
v′ − xv = −x,

a linear equation with integrating factor e−x
2/2. We can therefore write

(e−x
2/2v)′ = −xe−x

2/2.
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16 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Integrate to get

e−x
2/2v = e−x

2/2 + c,

so
v = 1 + ce−x

2/2.

The original differential equation has the general solution

y =
1

v
=

1

1 + ce−x2/2
,

in which c is an arbitrary constant.

5. This differential equation is homogeneous and setting y = ux gives us

u+ xu′ =
u

1 + u
.

This is the separable equation

x
du

dx
=

u

1 + u
− u

which, in terms of x and y, is(
1

u2
+

1

u

)
du = − 1

x
dx.

Integrate to get
1

u
+ ln |u| = − ln |x|+ c.

With u = y/x this reduces to

−x+ y ln |y| = cy,

with c an arbitrary constant.

6. This is a Riccati equation and one solution (by inspection) is S(x) = 4.
After some routine computation we obtain the general solution

y = 4 +
6x3

c− x3
.

7. The differential equation is exact, with general solution defined implicitly
by

xy − x2 − y2 = c.

9. The differential equation is of Bernoulli type with α = −3/4. The general
solution is defined by

5(xy)7/4 + 7x−5/4 = c.
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1.4. HOMOGENEOUS, BERNOULLI AND RICCATI EQUATIONS 17

11. The equation is Bernoulli with α = 2 and the change of variables v = y−1

leads to the general solution

y = 2 +
2

cx2 − 1
.

13. The differential equation is Riccati and one solution is S(x) = ex. A
general solution is given explicitly by

y =
2ex

ce2x − 1
.

15. For the first part,

F

(
ax+ by + c

dx+ py + r

)
= F

(
a+ b(y/x)c/x

d+ p(y/x) + r/x

)
= f

(y
x

)
if and only if c = r = 0.

Next, suppose x = X + h and y = Y + k. Then

dY

dX
= F

(
a(X + h) + b(Y + k) + c

d(x+ h) + p(Y + k) + r

)
= F

(
aX + bY + c+ ah+ bk + c

dX + pY + r + dh+ pk + r

)
.

This equation is homogeneous exactly when h and k can be chosen so that

ah+ bk = −c and dh+ pk = −r.

This 2× 2 system of algebraic equations has a solution exactly when the
determinant of the coefficients is nonzero, and this is the condition that∣∣∣∣a b

d p

∣∣∣∣ = ap− bd 6= 0.

17. Let X = x− 2, Y = y + 3 to get the homogeneous equation

dY

dX
=

3X − Y
X + Y

.

The general solution of the original equation (in terms of x and y) is
defined by

3(x− 2)2 − 2(x− 2)(y + 3)− (y + 3)2 = c,

with c an arbitrary constant.

19. Let X = x− 2, Y = y + 1 to obtain the general solution given by

(2x+ y − 3)2 = c(y − x+ 3).
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18 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

21. It is convenient to use polar coordinates to formulate a model for this
problem. Put the origin at the submarine at the time of sighting, and
the polar axis the line from there to the destroyer at this time (the point
(9, 0)). Initially the destroyer should steam at speed 2v directly toward the
origin, until it reaches (3, 0). During this time the submarine, moving at
speed v, will have moved three units from the point where it was sighted.
Let θ = ϕ be the ray (half-line) along which the submarine is moving.

Upon reaching (3, 0), the destroyer should execute a search pattern along
a path r = f(θ). The object is to choose this path so that the sub and
the destroyer both reach (f(ϕ,ϕ) at the same time T after the sighting.

From sighting to interception, the destroyer travels a distance

6 +

∫ ϕ

0

√
(f(θ))2 + (f ′(θ))2 dθ,

so

T =
1

2v

(
6 +

∫ ϕ

0

√
(f(θ))2 + (f ′(θ))2 dθ

)
.

For the submarine,

T =
1

v
f(ϕ).

Equate these two expressions for T and differentiate with respect to ϕ to
get

1

2

√
(f(ϕ))2 + (f ′(ϕ))2 = f ′(ϕ).

Denote the variable as θ and rearrange the last equation to obtain

f ′(θ)

f(θ)
= ± 1√

3
.

The positive sign here indicates that the destroyer should execute a star-
board (left) turn, while the negative sign is for a portside turn. Taking
the positive sign, solve for f(θ) to get

f(θ) = keθ/
√

3.

Now f(0) = k = 3, so the path of the destroyer is part of the graph of

f(θ) = 3seθ/
√

3.

After sailing directly to (3, 0), the destroyer should execute this spiral
pattern. A similar conclusion follows if the negative sign of 1/

√
3 is used.

This shows that the destroyer can carry out a maneuver that will take it
directly over the submarine at some time. However, there is no way to
solve for the specific time, so it is unknown when this will occur.
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Chapter 2

Second-Order Differential
Equations

2.1 The Linear Second-Order Equation

1. It is a routine exercise in differentiation to show that y1(x) and y2(x) are
solutions of the homogeneous equation, while yp(x) is a solution of the
nonhomogeneous equation. The Wronskian of y1(x) and y2(x) is

W (x) =

∣∣∣∣ sin(6x) cos(6x)
6 cos(6x) −6 sin(6x)

∣∣∣∣ = −6 sin2(x)− 6 sin2(x) = −6,

and this is nonzero for all x, so these solutions are linearly independent
on the real line. The general solution of the nonhomogeneous differential
equation is

y = c1 sin(6x) + c2 cos(6x) +
1

36
(x− 1).

For the initial value problem, we need

y(0) = c2 −
1

36
= −5

so c2 = −179/36. And

y′(0) = 2 = 6c1 +
1

36

so c1 = 71/216. The unique solution of the initial value problem is

y(x) =
71

216
sin(6x)− 179

36
cos(6x) +

1

36
(x− 1).

3. The associated homogeneous equation has solutions e−2x and e−x. Their
Wronskian is

W (x) =

∣∣∣∣ e−2x e−x

−2e−2x −e−x
∣∣∣∣ = e−3x

19

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



20 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

and this is nonzero for all x. The general solution of the nonhomogeneous
differential equation is

y(x) = c1e
−2x + c2e

−x +
15

2
.

For the initial value problem, solve

y(0) = −3 = c1 + c2 +
15

2

and
y′(0) = −1 = −2c1 − c2

to get c1 = 23/2, c2 = −22. The initial value problem has solution

y(x) =
23

2
e−2x − 22e−x +

15

2
.

5. The associated homogeneous equation has solutions

y1(x) = ex cos(x), y2(x) = ex sin(x).

These have Wronskian

W (x) =

∣∣∣∣ ex cos(x) ex sin(x)
ex cos(x)− ex sin(x) ex sin(x) + ex cos(x)

∣∣∣∣ = e2x 6= 0

so these solutions are independent. The general solution of the nonhomo-
geneous differential equation is

y(x) = c1e
x cos(x) + c2e

x sin(x)− 5

2
c2 − 5x− 5

2
.

We need

y(0) = c1 −
5

2
= 6

and
y′(0) = 1 = c1 + c2 − 5.

Solve these to get c1 = 17/2 and c2 = −5/2 to get the solution

y(x) =
17

2
ex cos(x)− 5

2
ex sin(x)− 5

2
x2 − 5x− 5

2
.

7. The Wronskian of x2 and x3 is

W (x) =

∣∣∣∣x2 x3

2x 3x2

∣∣∣∣ = x4.

Then W (0) = 0, while W (x) 6= 0 if x 6= 0. This is impossible if x2 and
x3 are solutions of equation (2.2) for some functions p(x) and q(x). We
conclude that these functions are not solutions of equation (2.2).
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 21

9. If y2(x) and y2(x) both have a relative extremum (max or min) at some
x0 within (a, b), then

y′(x0) = y′2(x0) = 0.

But then the Wronskian of these functions vanishes at 0, and these solu-
tions must be independent.

11. If y1(x0) = y2(x0) = 0, then the Wronskian of y1(x) and y2(x) is zero at
x0, and these two functions must be linearly dependent.

2.2 The Constant Coefficient Homogeneous Equa-
tion

1. From the differential equation we read the characteristic equation

λ2 − λ− 6 = 0,

which has roots −2 and 3. The general solution is

y(x) = c1e
−2x + c2e

3x.

3. The characteristic equation is

λ2 + 6λ+ 9 = 0

with repeated roots −3,−3. Then

y(x) = c1e
−3x + c2xe

−3x

is a general solution.

5. characteristic equation λ2 + 10λ + 26 = 0, with roots −5 ± i; general
solution

y(x) = c1e
−5x cos(x) + c2e

−5x sin(x).

7. characteristic equation λ2+3λ+18 = 0, with roots −3/2±3
√

7i/2; general
solution

y(x) = c2e
−3x/2 cos

(
3
√

7x

2

)
+ c2e

−3x/2 sin

(
3
√

7x

2

)
.

9. characteristic equation λ2−14λ+49 = 0, with repeated roots 7, 7; general
solution

y(x) = e7x(c1 + c2x).

In each of Problems 11–20 the solution is found by finding a general solution
of the differential equation and then using the initial conditions to find the
particular solution of the initial value problem.
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22 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

11. The differential equation has characteristic equation λ2 + 3λ = 0, with
roots 0,−3. The general solution is

y(x) = c1 + c2e
−3x.

Choose c1 and c2 to satisfy:

y(0) = c1 + c2 = 3,

y′(0) = −3c2 = 6.

Then c2 = −2 and c1 = 5, so the unique solution of the initial value
problem is

y(x) = 5− 2e−3x.

13. The initial value problem has the solution y(x) = 0 for all x. This can
be seen by inspection or by finding the general solution of the differential
equation and then solving for the constants to satisfy the initial conditions.

15. characteristic equation λ2 + λ − 12 = 0, with roots 3,−4. The general
solution is

y(x) = c1e
3x + c2e

−4x.

We need

y(2) = c1e
6 + c2e

−8 = 2

and

y′(2) = 3c1e
6 − 4c2e

−8 = −1.

Solve these to obtain

c1 = e−6, c2 = e8.

The solution of the initial value problem is

y(x) = e−6e3x + e8e−4x.

This can also be written

y(x) = e3(x−2) + e−4(x−2).

17. y(x) = ex−1(29− 17x)

19.

y(x) = e(x+2)/2
[
cos(
√

15(x+ 2)/2)

+
5√
15

sin(
√

15(x+ 2)/2)

]
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21. (a) The characteristic equation is λ2−2αλ+α2 = 0, with α as a repeated
root. The general solution is

y(x) = (c1 + c2x)eαx.

(b) The characteristic equation is λ2 − 2αλ + (α2 − ε2) = 0, with roots
α+ ε, α− ε. The general solution is

yε(x) = c1e
(α+ε)x + c2e

(α−ε)x.

We can also write

yε(x) =
(
c1e

εx + c2e
−εx) eαx.

In general,
lim
ε→0

yε(x) = (c1 + c2)eαx 6= y(x).

Note, however, that the coefficients in the differential equations in (a) and
(b) can be made arbitrarily close by choosing ε sufficiently small.

23. The roots of the characteristic equation are

λ1 =
−a+

√
a2 − 4b

2
and λ2 =

−a−
√
a2 − 4b

2
.

Because a2 − 4b < a2 by assumption, λ1 and λ2 are both negative (if
a2 − 4b ≥ 0), or complex conjugates (if a2 − 4b < 0). There are three
cases.

Case 1 - Suppose λ1 and λ2 are real and unequal. Then the general
solution is

y(x) = c1e
λ1x + c2e

λ2x

and this has limit zero as x→∞ because λ1 and λ2 are negative.

Case 2 - Suppose λ1 = λ2. Now the general solution is

y(x) = (c1 + c2x)eλ1x,

and this also has limit zero as x→∞.

Case 3 - Suppose λ1 and λ2 are complex. Now the general solution is

y(x) =
[
c1 cos(

√
4b− a2x/2) + c2 sin(

√
4b− a2x/2)

]
e−ax/2,

and this has limit zero as x→∞ because a > 0.

If, for example, a = 1 and b = −1, then one solution is e(−1+
√

5)x/2, and
this tends to ∞ as x→∞.
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24 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

2.3 Particular Solutions of the Nonhomogeneous
Equation

1. Two independent solutions of y′′ + y = 0 are y1(x) = cos(x) and y2(x) =
sin(x), with Wronskian

W (x) =

∣∣∣∣ cos(x) sin(x)
− sin(x) cos(x)

∣∣∣∣ = 1.

Let f(x) = tan(x) and use equations (2.7) and (2.8). First,

u1(x) = −
∫
y2(x)f(x)

W (x)
= −

∫
tan(x) sin(x) dx

= −
∫

sin2(x)

cos(x)
dx

= −
∫

1− cos2(x)

cos(x)
dx

=

∫
cos(x) dx−

∫
sec(x) dx

= sin(x)− ln | sec(x) + tan(x)|.

Next,

u2(x) =

∫
y1(x)f(x)

W (x)
dx =

∫
cos(x) tan(x) dx

=

∫
sin(x) dx = − cos(x).

The general solution is

y(x) = c1 cos(x) + c2 sin(x) + u1(x)y1(x) + u2(x)y2(x)

= c1 cos(x) + c2 sin(x)− cos(x) ln | sec(x) + tan(x)|.

For Problems 3–6, some details of the calculations are omitted.

3. The associated homogeneous equation has independent solutions y1(x) =
cos(3x) and y2(x) = sin(3x), with Wronskian 3. The general solution is

y(x) = c1 cos(3x) + c2 sin(3x) + 4x sin(3x) +
4

3
cos(3x) ln | cos(3x)|.

5. y1(x) = ex and y2(x) = e2x, with Wronskian W (x) = e3x. With f(x) =
cos(e−x), we find the general solution

y(x) = c1e
x + c2e

2x − e2x cos(e−x).
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In Problems 7–16 the method of undetermined coefficients is used to find
a particular solution of the nonhomogeneous equation. Details are included
for Problems 7 and 8, and solutions are outlined for the remainder of these
problems.

7. The associated homogeneous equation has independent solutions y1(x) =
e2x and e−x. Because 2x2+5 is a polynomial of degree 2, attempt a second
degree polynomial

yp(x) = Ax2 +Bx+ C

for the nonhomogeneous equation. Substitute yp(x) into this nonhomoge-
neous equation to obtain

2A− (2Ax+B)− 2(Ax2 +Bx+ C) = 2x2 + 5.

Equating coefficients of like powers of x on the left and right, we have the
equations

−2A = 2( coefficients of x2)

−2A− 2B − 0( coefficients of x

2A− 2B − 2C = 5( constant term.)

Then A = −1, B = 1 and C = −4. Then

yp(x) = −x2 + x− 4

and a general solution of the (nonhomogeneous) equation is

y = c1e
2x + c2e

−x − x2 + x− 4.

9. y1(x) = ex cos(3x) and y2(x) = ex sin(3x) are independent solutions of
the associated homogeneous equation. Try a particular solution yp(x) =
Ax2 +Bx+ C to obtain the general solution

y(x) = c1e
x cos(3x) + c2e

x sin(3x) + 2x2 + x− 1.

11. For the associated homogeneous equation, y1(x) = e2x and y2(x) = e4x.
Because ex is not a solution of the homogeneous equation, attempt a
particular solution of the nonhomogeneous equation of the form yp(x) =
Aex. We get A = 1, so a general solution is

y(x) = c1e
2x + c2e

4x + ex.

13. y1(x) = ex and y2(x) = e2x. Because f(x) = 10 sin(x), attempt

yp(x) = A cos(x) +B sin(x).

Substitute this into the (nonhomogeneous) equation to find that A = 3
and B = 1. A general solution is

y(x) = c1e
x + c2e

2x + 3 cos(x) + sin(x).
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26 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

15. y1(x) = e2x cos(3x) and y2(x) = e2x sin(3x). Try

ypx = Ae2x +Be3x.

This will work because neither e2x nor e3x is a solution of the associated
homogeneous equation. Substitute yp(x) into the differential equation and
obtain A = 1/3, B = −1/2. The differential equation has general solution

y(x) = [c1 cos(3x) + c2 sin(3x)]e2x +
1

3
e2x − 1

2
e3x.

In Problems 17–24 the strategy is to first find a general solution of the dif-
ferential equation, then solve for the constants to find a solution satisfying the
initial conditions. Problems 17–22 are well suited to the use of undetermined co-
efficients, while Problems 23 and 24 can be solved fairly directly using variation
of parameters.

17. y1(x) = e2x and y2(x) = e−2x. Because e2x is a solution of the asso-
ciated homogeneous equation, use xe2x in the method of undetermined
coefficients, attempting

yp(x) = Axe2x +Bx+ C.

Substitute this into the nonhomogeneous differential equation to obtain

4Axe2x + 4Axe2x − 4Axe2x − 4Bx− 4C = −7e2x + x.

Then A = −7/4, B = −1/4 and C = 0, so the differential equation has
the general solution

y(x) = c1e
2x + c2e

−2x − 7

4
xe2x − 1

4
x.

We need
y(0) = c1 + c2 = 1

and

y′(0) = 2c1 − 2c2 −
7

4
− 1

4
= 3.

Then c1 = 7/4 and c2 = −3/4. The initial value problem has the unique
solution

y(x) =
7

4
e2x − 3

4
e−2x − 7

4
xe2x − 1

4
x.

19. We find the general solution

y(x) = c1e
−2x + c2e

−6x +
1

5
e−x +

7

12
.

The solution of the initial value problem is

y(x) =
3

8
e−2x − 19

120
e−6x +

1

5
e−x +

7

12
.
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21. e4x and e−2x are independent solutions of the associated homogeneous
equation. The nonhomogeneous equation has general solution

y(x) = c1e
4x + c2e

−2x − 2e−x − e2x.

The solution of the initial value problem is

y(x) = 2e4x + 2e−2x − 2e−x − e2x.

23. The differential equation has general solution

y(x) = c1e
x + c2e

−x − sin2(x)− 2.

The solution of the initial value problem is

y(x) = 4e−x − sin2(x)− 2.

2.4 The Euler Differential Equation

Details are included with solutions for Problems 1–2, while just the solutions
are given for Problems 3–10. These solutions are for x > 0.

1. Read from the differential equation that the characteristic equation is

r2 + r − 6 = 0

with roots 2,−3. The general solution is

y(x) = c1x
2 + c2x

−3.

3.
y(x) = c1 cos(2 ln(x)) + c2 sin(2 ln(x))

5.

y(x) = c1x
2 + c1

1

x4

7.

y(x) = c1
1

x2
+ c2

1

x3

9.

y(x) =
1

x12
(c1 + c2 ln(x))

11. The general solution of the differential equation is

y(x) = c1x
3 + c2x

−7.

From the initial conditions, we need

y(2) = 8c1 + 2−7c2 = 1 and y′(2) = 3c122 − 7c22−8 = 0.

Solve for c1 and c2 to obtain the solution of the initial value problem

y(x) =
7

10

(x
2

)3

+
3

10

(x
2

)−7

.
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13. y(x) = x2(4− 3 ln(x))

15. y(x) = 3x6 − 2x4

17. With Y (t) = y(et), use the chain rule to get

y′(x) =
dY

dt

dt

dx
=

1

x
Y ′(t)

and then

y′′(x) =
d

dx

(
1

x
Y ′(t)

)
= − 1

x2
Y ′(t) +

1

x

d

dx
(Y ′(t))

= − 1

x2
Y ′(t) +

1

x

dY ′

dt

dt

dx

= − 1

x2
Y ′(t) +

1

x

1

x
Y ′′(t)

=
1

x2
(Y ′′(t)− Y ′(t)).

Then
x2y′′(x) = Y ′′(t)− Y ′(t).

Substitute these into Euler’s equation to get

Y ′′(t) + (A− 1)Y ′(t) +BY (t) = 0.

This is a constant coefficient second-order homogeneous differential equa-
tion for Y (t), which we know how to solve.

19. The problem to solve is

x2y′′ − 5dxy′ + 10y = 0; y(1) = 4, y′(1) = −6.

We know how to solve this problem. Here is an alternative method, us-
ing the transformation x = et, or t = ln(x) for x > 0 (since the initial
conditions are specified at x = 1). Euler’s equation transforms to

Y ′′ − 6Y ′ + 10Y = 0.

However, also transform the initial conditions:

Y (0) = y(1) = 4, Y ′(0) = (1)y′(1) = −6.

This differential equation for Y (t) has general solution

Y (t) = c1e
3t cos(t) + c2e

3t sin(t).

Now
Y (0) = c2 = 4
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and
Y ′(0) = 3c1 + c2 = −6,

so c2 = −18. The solution of the transformed initial value problem is

Y (t) = 4e3t cos(t)− 18e3t sin(t).

The original initial value problem therefore has the solution

y(x) = 4x3 cos(ln(x))− 19x3 sin(ln(x))

for x > 0. The new twist here is that the entire initial value problem
(including initial conditions) was transformed in terms of t and solved for
Y (t), then this solution Y (t) in terms of t was transformed back to the
solution y(x) in terms of x.

2.5 Series Solutions

2.5.1 Power Series Solutions

1. Put y(x) =
∑∞
n=0 anx

n into the differential equation to obtain

y′ − xy =
∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n+1

=
∞∑
n=1

nanx
n−1 −

∞∑
n=2

an−2x
n−1

= a1 + (2a2 − a0)x+

∞∑
n=3

(nan − an−2)xn−1

= 1− x.

Then a0 is arbitrary, a1 = 1, 2a2 − a0 = −1, and

an =
1

n
an−2 for n = 3, 4, · · · .

This is the recurrence relation. If we set a0 = c0 + 1, we obtain the
coefficients

a2 =
1

2
c0, a4 =

1

2 · 4
c0, a6 =

1

2 · 4 · 6
c0,

and so on. Further,

a1 = 1, a3 =
1

3
, a5 =

1

3 · 5
, a7 =

1

3 · 5 · 7
and so on. The solution can be written

y(x) = 1 +
∞∑
n=0

1

3 · 5 · · · 2n+ 1
x2n+1

+ c0

(
1 +

∞∑
n=1

1

2 · 4 · · · 2n
x2n

)
.
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3. Write

y′ + (1− x2)y =
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n −

∞∑
n=0

anx
n+2

= (a1 + a0) + (2a2 + a1)x+
∞∑
n=3

(nan + an−1 − an−3)xn−1

= x.

The recurrence relation is

nan + an−1 − an−3 = 0 for n = 3, 4, · · · .

Here a0 is arbitrary, a1 + a0 = 0 and 2a2 + a1 = 1. This gives us the
solution

y(x) = a0

(
1− x+

1

2!
x2 +

1

3!
x3 − 7

4!
x4 +

19

5!
x5 + · · ·

)
+

1

2!
x2 − 1

3!
x3 +

1

4!
x4 +

11

5!
x5 − 31

6!
x6 + · · · .

5. Write

y′′ − xy′ + y =
∞∑
n=2

n(n− 1)nx
n−2 −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

= 2a2 + a0 +
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 3.

Here a0 and a1 are arbitrary and a2 = (3−a0)/2. The recurrence relation
is

an+2 =
n− 1

(n+ 2)(n+ 1)
for n = 1, 2, · · · .

This yields the general solution

y(x) = a0 + a1x+
3− a0

2
x2 +

3− a0

4!
x4

+
3(3− a0)

6!
x6 +

3 · 5(3− a0)

8!
x8 + · · · .

7. We have

y′′ − x2y′ + 2y =
∞∑
n=2

n(n− 1)anx
n−2

−
∞∑
n=1

nanx
n+1 +

∞∑
n=0

2anx
n

= 2a2 + 2a0 + (6a3 + 2a1)x

+
∞∑
n=1

(n(n− 1)an − (n− 3)an−3 + 2an−2)xn−2 = x.
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Then a0 and a1 are arbitrary, a2 = −a0, and 6a3+2a1 = 1. The recurrence
relation is

an =
(n− 3)an−3 − 2an−2

n(n− 1)

for n = 4, 5, · · · . The general solution has the form

y(x) = a0

[
1− x2 +

1

6
x4 − 1

10
x5 − 1

90
x6 + · · ·

]
+ a1

[
x− 1

3
x3 +

1

12
x4 +

1

30
z5 − 7

180
x6 + · · ·

]
+

1

6
x3 − 1

6
x5 +

1

60
x6 +

1

1260
x7 − 1

480
x8 + · · · .

Note that a0 = y(0) and a1 = y′(0). The third series represents the
solution obtained subject to y(0) = y′(0) = 0.

9. We have

y′′ + (1− x)y′ + 2y =
∞∑
n=2

n(n− 1)anx
n−2

+

∞∑
n=1

nanx
n−1 −

∞∑
n=1

nanx
n + 2

∞∑
n=0

anx
n

= (2a2 + a1 + 2a0) +
∞∑
n=3

(n(n− 1)an + (n− 1)an−1 − (n− 4)a2n−2)xn−2

= 1− x2.

Then a0 and a1 are arbitrary, 2a2 + a1 + 2a0 = 1, 6a3 + 2a2 + a1 = 0, and
12a4 + 3a3 = −1. The recurrence relation is

an =
−(n− 1)an−1 + an−4an−2

n(n− 1)

for n = 5, 6, · · · . The general solution is

y(x) = a0

[
1− x2 +

1

3
x3 − 1

12
x4 +

1

30
x5 − · · ·

]
+ a1

(
x− 1

2
x2

)
+

1

2
x2 − 1

6
x3 − 1

24
x4 − 1

360
x6 +

1

2520
x7 + · · · .

Here a0 = y(0) and a1 = y′(0).
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2.5.2 Frobenius Solutions

1. Substitute y(x) =
∑∞
n=0 cnx

n+r into the differential equation to get

xy′′ + (1− x)y′ + y =
∞∑
n=0

(n+ r)(n+ r − 1)cnx
n+r−2

+
∞∑
n=0

(n+ r)cnx
n+r−1 −

∞∑
n=0

(n+ r)cnx
n+r +

∞∑
n=0

cnx
n+r

= r2c0x
r−1 +

∞∑
n=1

((n+ r)2cn − (n+ r − 2)cn−1)xn+r−1

= 0.

Because c0 is assumed to be nonzero, r must satisfy the indicial equation
r2 = 0, so r1 = r2 = 0. One solution has the form

y1(x) =

∞∑
n=0

cnx
n,

while a second solution has the form

y2(x) = y1(x) ln(x) +
∞∑
n=0

c∗nx
n.

For the first solution, choose the coefficients to satisfy c0 = 1 and

cn =
n− 2

n2
cn−1 for n = 1, 2, · · · .

This yields the solution y1(x) = 1− x. The second solution is therefore

y2(x) = (1− x) ln(x) +
∞∑
n=0

c∗nx
n.

Substitute this into the differential equation to obtain

x

[
− 2

x
− 1− x

x2

]
+ (1− x)

[
− ln(x) +

1− x
x

]
+ (1− x) ln(x) +

∞∑
n=2

n(n− 1)c∗nx
n−1 + (1− x)

∞∑
n=1

c∗nx
n−1

+
∞∑
n=1

c∗nx
n

= (−3 + c∗1) + (1 + 4c∗2)x+
∞∑
n=3

(n2c∗n − (n− 2)c∗n−1)xn−2

= 0.
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The coefficients are determined by c∗1 = 3, c∗2 = −1/4, and

c∗n =
n− 2

n2
for n = 3, 4, · · · .

A second solution is

y2(x) = (1− x) ln(x) + 3x−
∞∑
n=2

1

n(n− 1)
xn.

3. The indicial equation is r2 − 4r = 0, so r1 = 4 and r2 = 0. There are
solutions of the form

y1(x) =
∞∑
n=0

cnx
n+4 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n.

With r = 4 the recurrence relation is

cn =
n+ 1

n
cn−1 for n = 1, 2, · · · .

Then
y1(x) = x4(1 + 2x+ 3x2 + 4x3 + · · · ).

Using the geometric series, we can observe that

y1(x) = x4 d

dx
(1 + x+ x2 + x3 + · · · )

= x4 d

dx

(
1

1− x

)
=

x4

(1− x)2
.

This gives us the second solution

y2(x) =
3− 4x

(1− x)2
.

5. The indicial equation is 4r2 − 2r = 0, with roots r1 = 1/2 and r2 = 0.
There are solutions of the form

y1(x) =
∞∑
n=0

cnx
n+1/2 and y2(x) =

∞∑
n=0

c∗nx
n.

Substitute these into the differential equation to get

y1(x) = x1/2

[
1 +

∞∑
n=1

(−1)n

2nn!(3 · 5 · 7 · · · (2n+ 1))
xn

]

= x1/2

[
1− 1

6
x+

1

120
x2 − 1

5040
x3 +

1

362880
x4 + · · ·

]
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and

y2(x) = 1 +
∞∑
n=1

(−1)n

2nn!(1 · 3 · 5 · · · (2n− 1))
xn

= 1− 1

2
x+

1

24
x2 − 1

720
x3 +

1

40320
x4 + · · · .

7. The indicial equation is r2 − 3r + 2 = 0, with roots r1 = 2 and r2 = 1.
There are solutions

y(x) =
∞∑
n=0

cnx
n+2 and

∞∑
n=0

c∗nx
n−2.

Substitute these in turn into the differential equation to obtain the solu-
tions

y1(x) = x2 +
1

3!
x4 +

1

5!
x6 +

1

7!
x8 + · · ·

and

y2(x) = x− x2 +
1

2!
x3 − 1

3!
x4 +

1

4!
x5 − · · · .

We can recognize these series as

y1(x) = x sinh(x) and y2(x) = xe−x.

9. The indicial equation is 2r2 = 0, with roots r1 = r2 = 0. There are
solutions

y1(x) =

∞∑
n=0

cnx
n and y2(x) = y1(x) ln(x) +

∞∑
n=1

c∗nx
n.

Upon substituting these into the differential equation, we obtain the in-
dependent solutions

y1(x) = 1− x

and

y2(x) = (1− x) ln

(
x

x− 2

)
− 2.
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Chapter 3

The Laplace Transform

3.1 Definition and Notation

1.

F (s) =
3(s2 − 4)

(s2 + 4)2

3.

H(s) =
14

s2
− 7

s2 + 49

5.

K(s) = − 10

(s+ 4)2
+

3

s2 + 9

7. q(t) = cos(8t)

9.

p(t) = e−42t − 1

6
t3e−3t

11. (a) From the definition,

F (s) = L[f ](s) = lim
R→∞

∫ R

0

e−stf(t) dt.

For each R, let N be the largest integer such that (N + 1)T ≤ R to write∫ R

0

e−stf(t) dt =
N∑
n=0

∫ (n+1)T

nT

e−stf(t) dt+

∫ R

(N+1)T

e−stf(t) dt.

By choosing R sufficiently large, we can make the last integral on the right
as small as we like. Further, R→∞ as N →∞, so∫ ∞

0

e−stf(t) dt =
∞∑
n=0

∫ (n+1)T

nT

e−stf(t) dt.

35
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36 CHAPTER 3. THE LAPLACE TRANSFORM

(b) Use the periodicity of f(t) and the change of variables u = t− nT to
write ∫ (n+1)T

nT

e−stf(t) dt =

∫ T

0

e−s(u+nT )f(u+ nT ) dt

= e−snT
∫ T

0

e−suf(u) du,

because f(u+ nT ) = f(u).

(c) Use the results of (a) and (b) to write

L[f ](s) =
∞∑
n=0

∫ (n+1)T

nT

e−stf(t) dt

=

∞∑
n=0

e−snT
∫ T

0

f(t) dt

=

[ ∞∑
n=0

e−snT

]∫ T

0

e−stf(t) dt,

because the summation is independent of t.

(d) For s > 0, 0 < e−st < 1 and we can use the geometric series to obtain

∞∑
n=0

e−snt =
∞∑
n=0

(
e−sT

)n
=

1

1− e−sT
.

Therefore

L[f ](s) =
1

1− e−sT

∫ T

0

e−stf(t) dt.

13. f has period T = π/ω and∫ T

0

e−stf(t) dt =

∫ π/ω

0

Ee−st sin(ωt) dt

=
Eω

s2 + ω2

(1 + e−πs/ω)

1− e−πs/ω
.

15. f has period 6 and f(t) = t/3 for 0 ≤ t < 6. Compute∫ T

0

e−stf(t) dt =

∫ 6

0

1

3
te−st dt =

1

3s2
(1− 6se−6s − e−6s).

Then

L[f ](s) =
1

3s2

1− 6se−6s − e−6s

1− e−6s
.
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3.2. SOLUTION OF INITIAL VALUE PROBLEMS 37

17. Here

f(t) =

{
h for 0 < t ≤ a,

0 for a < t ≤ 2a,

with period 2a. Then∫ 2a

0

e−stf(t) dt =

∫ a

0

he−st dt =
h

s
(1− e−as).

Then

L[f ](s) =
h

s

1− e−as

1− e−2as
.

3.2 Solution of Initial Value Problems

In many of these problems a partial fractions decomposition is used to find the
inverse transform of the transform of the solution (hence find the solution).
Partial fractions are reviewed in a web module.

1. Transform the differential equation, using the operational formula, to ob-
tain

sY (s)− y(0) + 4Y (s) =
1

s
.

With y(0) = 3, this is

sY − 3 + 4Y =
1

s
.

Then

Y (s) =
1

s+ 4

[
1

s
− 3

]
=

1− 3s

s(s+ 4)
.

Decompose this into a sum of simpler fractions:

Y (s) =
A

s
+

B

s+ 4
.

It these fractions are added, the numerator must equal the numerator of
the original fraction, 1− 3s:

A(s+ 4) +Bs = 1− 3s.

Then
(A+B)s+ 4A = 1− 3s.

Matching coefficients of like powers of x, this requires that

A+B = −3 and 4A = 1.

Then A = 1/4 and B = −13/4. Now

Y (s) =
1

4

1

s
− 13

4

1

s+ 4
.
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Now we immediately read from Table 3.1 that

y(t) = L−1[Y ](t) =
1

4
− 13

4
e−4t.

This is the solution of the initial value problem.

3. Take the transform of the differential equation and insert the initial data
and solve for Y (s) to get

Y (s) =
1

s+ 4

(
s

s2 + 1

)
.

Use a partial fractions decomposition to obtain

Y (s) = − 4

17

1

s+ 4
+

1

17

4s+ 1

s2 + 1
.

The inverse of this is the solution:

y(t) = − 4

17
e−4t +

4

17
cos(t) +

1

17
sin(t).

5. The transform of the initial value problem is

sY − 4− 2Y =
1

s
− 1

s2
.

Then

Y (s) =
1

s− 2

(
1

s
− 1

s2
+ 4

)
=

1

2

1

s2
− 1

4

1

s
+

17

4

1

s− 2
.

The solution is

y(t) =
1

2
t− 1

4
+

17

4
e2t.

7. Transform the differential equation to obtain

s2Y − sy(0)− y′(0)− 4(sY − y(0)) + 4Y =
s

s2 + 1
.

Insert the initial conditions to get

(s− 2)2Y =
s

s2 + 1
+ s− 5.

Then

Y (s) =
s

(s2 + 1)(s− 2)2
+

s− 5

(s− 2)2
.
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With a some manipulation, write this as

Y (s) =
s3 − 5s2 + 2s− 5

(s2 + 1)(s− 2)2
.

Expand this in partial fractions:

Y (s) =
As+B

s2 + 1
+

C

s− 2
+

D

(s− 2)2
.

To determine the coefficients, we need the numerator in the sum of these
fractions to equal the numerator in Y (s):

(As+B)(s− 2)2 + C(s− 2)(s2 + 1) +D(s2 + 1)

= (A+ C)s3 + (−4A+B − 2C +D)s2 + (4A− 4B + C)s+ (4B − 2C +D)

= s3 − 5s2 + 2s− 5.

Matching coefficients of powers of s, we obtain:

A+ C = 1,

−4A+B − 2C +D = −5,

4A− 4B + C = 2,

4B − 2C +D = −5.

Then

A =
3

25
, B = − 4

25
, C =

22

25
, D = −13

5
.

Then

Y (s) =
3

25

s

s2 + 1
− 4

25

1

s2 + 1
+

22

25

1

s− 2
− 13

5

1

(s− 2)2
.

These terms are easily inverted to obtain the solution

y(t) =
3

25
cos(t)− 4

25
sin(t) +

22

25
e2t − 13

5
te2t.

9. Upon transforming the differential equation and inserting the initial con-
ditions, we have

Y (s) =
1

s2 + 16

[
1

s
+

1

s2
− 2s+ 1

]
=

1

16

1

s2
+

1

16

1

s
− 33

16

s

s2 + 16
− 15

64

1

s2 + 16
.

The solution is

y(t) =
1

16
(1 + t)− 33

16
cos(4t) +

15

64
sin(4t).
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11. Begin with the definition of the Laplace transform and integrate by parts:

L[f ′](s) =

∫ ∞
0

e−stf ′(t) dt

= e−stf(t)
]b
a
−
∫ ∞

0

−se−stf(t) dt

= −f(0) + s

∫ ∞
0

e−stf(t) dt

= sF (s)− f(0).

3.3 The Heaviside Function and Shifting Theo-
rems

In each of Problems 1–15, we will indicate shifting f(t) by a, replacing t with
t− a, by writing

[f(t)]t→t−a.

Similarly, if we replace s with s− a in the transform F (s) of f(t), we will write

[F (s)]s→s−a

or sometimes

L[f(t)]s→s−a.

This notation is sometimes useful in applying a shifting theorem or inverse
shifting theorem.

1. Apply the shifting theorem:

L[(t3 − 3t+ 2)e−2t](s) = L[t3 − 3t+ 2]s→s+2

=
6

(s+ 2)4
− 3

(s+ 2)2
+

2

s+ 2
.

3. First write

f(t) = [1−H(t− 7)] +H(t− 7) cos(t)

= [1−H(t− 7)] +H(t− 7) cos((t− 7) + 7)

= [1−H(t− 7)] + cos(7)H(t− 7) cos(t− 7)− sin(7)H(t− 7) sin(t− 7).

Then

L[f ](s) =
1

s

(
1− e−7s

)
+

s

s2 + 1
cos(7)e−7s − 1

s2 + 1
sin(7)e−7s.
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5. First, write the function as

f(t) = t+ (1− 4t)H(t− 3)

= t+ (1− 4(t− 3) + 3)H(t− 3)

= t− 11H(t− 3)− 4(t− 3)H(t− 3).

Then

L[f ](s) =
1

s2
− 11

s
e−3s − 4

s2
e−3s.

7. Replace s with s+ 1 in the transform of 1− t2 + sin(t) to get

L[f ](s) =
1

s+ 1
− 2

(s+ 1)2
+

1

(s+ 1)2 + 1
.

9. First, write

f(t) = (1−H(t− 2π)) cos(t) +H(t− 2π)(2− sin(t)).

Then

l[f ](s) =
s

s2 + 1
+

(
2

s
− s

s2 + 1
− 1

s2 + 1

)
e−2πs.

11. Because

L[t cos(t)](s) =
s2 − 9

(s2 + 9)2
,

we obtain the transform of te−t cos(t) by replacing s with s+ 1:

L[te−t cos(t)](s) =
(s+ 1)2 − 9

((s+ 1)2 + 9)2
.

13. First, put f(t) in terms of the Heaviside function as

f(t) = (1−H(t− 16))(t− 2)−H(t− 16)

= t− 2 + (1− t)H(t− 16).

Then

L[f ](s) =
1

s2
− 2

s
+

(
1

s
− 1

s2

)
e−16s.

15. Replace s with s+ 5 in the transform of t4 + 2t2 + 1 to obtain

F (s) =
24

(s+ 5)5
+

4

(s+ 5)3
+

1

(s+ 5)2
.

17. Write

F (s) =
1

(s− 2)2 + 1
.

This is the transform of sin(t) with s replaced by s− 2. Therefore

f(t) = e2t sin(t).
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19. Because 3/(s2 + 9) is the transform of sin(3t), then

f(t) =
1

3
sin(3(t− 2))H(t− 2).

21. We recognize that

F (s) =
1

(s+ 3)2 − 2
so

f(t) =
1√
2
e−3t sinh(

√
2t).

23. Write

F (s) =
(s+ 3)− 1

(s+ 3)2 − 8

to obtain

f(t) = e−3t cosh(2
√

2t)− 1

2
√

2
e−3t sinh(2

√
2t).

25. First use a partial fractions decomposition to write

1

s(s2 + 16)
=

1

16

1

s
− 1

16

s

s2 + 16
.

From this,

f(t) =
1

16
(1− cos(4(t− 21)))H(t− 21).

27. The initial value problem is

y′′ + 4y = 3H(t− 4); y(0) = 1, y′(0) = 0.

This transforms to

Y (s) =
3

4

[
1

s
− s

s2 + 4

]
e−4s +

s

s2 + 4
.

Invert this to obtain the solution

y(t) = cos(2t) +
3

4
(1− cos(2(t− 4)))H(t− 4).

29. The problem is

y(3) − 8y′ = 2H(t− 6); y(0) = y′(0) = 0.

The transform of the problem is

Y (s) =

[
− 1

4s
+

1

12

1

s− 2
+

1

6

s

s2 + 2s− 4

]
e−6s.

Invert this to obtain the solution

y(t) =

[
−1

4
+

1

12
e−2(t−6) +

1

6
e−(t−6) cos(

√
3(t− 6))

]
H(t− 6).
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31. The problem is

y(3) − y′′ + 4y′ − 4y = 1 +H(t− 5); y(0) = y′(0) = 0, y′′ = 1.

Transform this to obtain

Y (s) =

[
− 1

4s
+

2

5

1

s− 1
− 3

20

s

s2 + 4
− 2

5

1

s2 + 4

]
(1− e−5s).

Invert this for the solution

y(t) = −1

4
+

2

5
et − 3

20
cos(2t)− 1

5
sin(2t)

−
[
−1

4
+

2

5
et−5 − 3

20
cos(2(t− 5))− 1

5
sin(2(t− 5))

]
H(t− 5).

33. The current i(t) is modeled by

Li′ +Ri = k(1−H(t− 5)); i(0) = 0.

Transform the problem and solve for I(s) to get

I(s) =
k

Ls+R
(1− e−5s)

=
k

R

[
1

s
− 1

s+R/L

]
(1− e−5s).

Invert this to obtain the solution for the current:

i(t) =
k

R
(1− e−Rt/L)− k

R
(1− e−R(t−5)/L)H(t− 5).

In Problems 34–38, the Heaviside formula is used to compute an inverse
transform. One way to use this formula efficiently is to begin with F (s), which
has the form

F (s) =
p(s)

(s− a1)(s− a2) · · · (s− an)
.

For the first term, cover up the s−a1 factor and evaluate the resulting quotient
at a1 to get the coefficient of ea1t. Then cover up the s− a2 factor and evaluate
the resulting quotient at a2 for the coefficient of ea2t. Continue this through the
n simple zeros of the denominator to obtain f(t).

35. With

F (s) =
s2

(s− 1)(s− 2)(s+ 5)

we have a1 = 1, a2 = 2 and a3 = −5. Then

f(t) =
12

(−1)(6)
et +

22

(1)(7)
e2t +

52

(−6)(−7)
e5t

=
1

6
et +

4

7
e2t +

25

42
e5t.
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37. Here

F (s) =
s2 + 2s− 1

(s− 3)(s− 5)(s+ 8)
.

Then

f(t) =
14

(−2)(11)
e3t +

34

(2)(3)
e5t +

47

(−11)(−13)
e−3t

= − 7

11
e3t +

17

13
e5t +

47

143
e−3t.

39. Write

(s− aj)
p(s)

q(s)
=

p(s)

(q(s)− q(aj)/(s− aj))

and take the limit as s→ aj . Finally, use the fact that

lim
s→aj

q(s)− q(aj)
s− aj

= q′(aj).

3.4 Convolution

1. Let

F (s) =
1

s2 + 4
and G(s) =

1

s2 − 4
.

Then

L−1[F ](t) =
1

2
sin(2t) and L−1[G](t) =

1

2
sinh(2t).

By the convolution theorem,

L−1[F (s)G(s)](t) =
1

2
sin(2t) ∗ 1

2
sinh(2t)

=
1

4

∫ t

0

sin(2(t− τ)) sinh(τ) dτ

=
1

16
[sin(2(t− τ)) cosh(2τ) + cos(2(t− τ)) sinh(2τ)]

t
0

=
1

16
(sinh(2t)− sin(2t)).
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3. There are two cases. Suppose first that a2 6= b2. Then

L−1

[
s

s2 + a2

1

s2 + b2

]
(t) = cos(at) ∗ 1

b
sin(bt)

=
1

b

∫ t

0

cos(a(t− τ)) sin(bτ) dτ

=
1

2b

∫ t

0

[sin((b− a)τ + at) + sin((b+ a)τ − at) dτ ] dτ

=
1

2b

[
−cos((b− a)τ + at)

b− a
− cos((b+ a)τ − at)

b+ a

]t
0

=
1

2b

[
−cos(bt)

b− a
− cos(bt)

b+ a
+

cos(at)

b− a
+

cos(at)

b+ a

]
=

cos(at)− cos(bt)

(b− a)(b+ a)
.

If a2 = b2, then

L−1

[
s

s2 + a2

1

s2 + b2

]
(t) = cos(at) ∗ 1

a
sin(at)

=
1

a

∫ t

0

cos(a(t− τ)) sin(aτ) dτ

=
1

2a

∫ t

0

(sin(at) + sin(2aτ − at)) dτ

=
1

2a

[
τ sin(at)− 1

2a
cos(a(2τ − t))

]t
0

=
1

2a
t sin(at).

5. First,

L−1

[
1

s(s2 + a2)

]
(t) =

1

a2
(1−cos(at)) and L−1

[
1

s2 + a2

]
(t) =

1

a
t sin(at).

Then

L−1

[
1

s(s2 + a2)

]
(t) =

1

a2
[1− cos(at)] ∗ sin(at)

=
a

a3

∫ t

0

[1− cos(a(t− τ))] sin(aτ) dτ

=
1

a3

[
−1

a
cos(aτ)− 1

2
τ sin(at) +

1

4a
cos(2aτ − at)

]t
0

=
1

a4
(1− cos(at))− 1

2a3
sin(at).
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7.

L−1

[
1

s+ 2

e−4s

s

]
(t) = e−2t ∗H(t− 4)

=

∫ t

4

e−2(t−τ)dτ

=

{
1
2e
−2(t−4) if t > 4,

0 if t ≤ 4.

We can therefore write the inverse transform as

L−1

[
1

s+ 2

e−4s

s

]
(t) =

1

2
(1− e−2(t−4))H(t− 4).

9. Take the transform of the initial value problem and solve for Y (s) to get

Y (s) =
F (s)

s2 − 5s+ 6
=

[
1

s− 3
− 1

s− 2

]
F (s).

By the convolution theorem,

y(t) = e3t ∗ f(t)− e2t ∗ f(t).

For Problems 11–16 the solution is given, but the details (similar to those
of Problems 9 and 10) are omitted.

11.

y(t) =
1

4
e6t ∗ f(t)− 1

4
e2t ∗ f(t) + 2e6t − 5e2t

13.

y(t) =
1

3
sin(3t) ∗ f(t)− cos(3t) +

1

3
sin(3t)

15.

y(t) =
1

4
e2t ∗ f(t) +

1

12
e−2t ∗ f(t)− 1

3
et ∗ f(t)− 1

4
e2t − 1

12
e−2t +

4

3
et

17. The integral equation can be expressed as

f(t) = −1 + f(t) ∗ e−3t.

Take the transform of this equation to obtain

F (s) = −1

s
+
F (s)

s+ 3
.

Then

F (s) = − s+ 3

s(s+ 2)
=

1

2

1

s+ 2
− 3

2

1

s
.

Invert to obtain the solution

f(t) =
1

2
e−2t − 3

2
.
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19. The equation is f(t) = e−t + f(t) ∗ 1. Take the transform and solve for
F (s) to get

F (s) =
s

(s− 1)(s+ 1)
=

1

2

1

s+ 1
+

1

2

1

s− 1
.

Then

f(t) =
1

2
e−t +

1

2
et = cosh(t).

21. The equation is f(t) = 3 + f(t) ∗ cos(2t). From this we obtain

F (t) =
3(s2 + 4)

s(s2 − s+ 4)
=

3

s
+

3

s2 − s+ 4
.

The inverse of this is

f(t) = 3 +
2
√

15

5
et/2 sin

(√
15

2
t

)
.

23. Let F = L[f ] and G = L[g]. Then

F (s)G(s) = F (s)

∫ ∞
0

e−sτg(τ) dτ.

Now recall that

e−sτF (s) = L[H(t− τ)f(t− τ)](s).

Substitute this into the expression for F (s)G(s) to get

F (s)G(s) =

∫ ∞
0

L[H(t− τ)f(t− τ)](s)g(τ) dτ.

But, from the definition of the Laplace transform,

L[H(t− τ)f(t− τ)] =

∫ ∞
0

e−stH(t− τ)f(t− τ) dt.

Then

F (s)G(s) =

∫ ∞
0

[∫ ∞
0

e−stH(t− τ)f(t− τ) dt

]
g(τ) dτ

=

∫ ∞
0

∫ ∞
0

e−stg(τ)H(t− τ)f(t− τ) dτ dt.

But H(t− τ) = 0 if 0 ≤ t < τ , while H(t− τ) = 1 if t ≥ τ . Therefore

F (s)G(s) =

∫ ∞
0

∫ ∞
τ

e−stg(τ)f(t− τ) dt dτ.
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The last integration is over the wedge in the t, τ− plane consisting of
points (t, τ) with 0 ≤ τ ≤ t < ∞. Reverse the order of integration to
write

F (s)G(s) =

∫ ∞
0

∫ t

0

e−stg(τ)f(t− τ) dτ dt

=

∫ ∞
0

e−st
[∫ t

0

g(τ)f(t− τ) dτ

]
dt

=

∫ ∞
0

e−st(f ∗ g)(t) dt

= L[f ∗ g](s).

This is what we wanted to show.

3.5 Impulses and the Dirac Delta Function

In Problem 1 details of the solution are given. For Problems 2–5, the details
are similar and only the solution is given.

1. Transform the initial value problem to obtain

(s2 + 5s+ 6)Y (s) = 3e−2s − 4e−5s.

Using a partial fractions decomposition, this gives us

Y (s) = 3

[
1

s+ 2
− 1

s+ 3

]
e−3s − 4

[
1

s+ 2
− 1

s+ 3

]
e−5s.

Invert this to obtain the solution

y(t) = 3
[
e−2(t−2) − e−3(t−2)

]
H(t− 2)− 4

[
e−2(t−5) − e−3(t−5)

]
H(t− 5).

3.

y(t) = 6(e−2t − e−t + te−t)

5.

y(t) = (B + 9)e−2t − (B + 6)e−3t

3.6 Systems of Linear Differential Equations

1. Take the transform of the system:

sX − 2sY =
1

s
, sX −X + Y = 0.
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Then

X(s) =
1

s2(2s− 1)
= − 1

s2
− 2

s
+

4

2s− 1
,

Y (s) =
1− s

s2(2s− 1)
= − 1

s2
− 1

s
+

2

2s− 1
.

Apply the inverse transform to get the solution

x(t) = −t− 2 + 2et/2, y(t) = −t− 1 + et/2.

3. After transforming the system, we obtain

sX + (2s− 1)Y =
1

s
, 2sX + Y = 0.

Then

X(s) = − 1

s2(4s− 3)
=

4

9s
− 16

9(4s− 3)
+

1

3s2
,

Y (s) =
2

s(4s− 3)
= − 2

3s
+

8

3(4s− 3)
.

Invert these to obtain

x(t) =
4

9
(1− e3t/4) +

1

3
t,

y(t) =
2

3
(−1 + e3t/4).

5. The system transforms to

3sX − Y =
2

s2
sX + sY − Y = 0.

Then

X(s) =
2(s− 1)

s2(3s− 2)
=

3

4s
+

1

2s2
+

1

s3
− 9

4(3s− 2)
,

Y (s) = − 2

s2(3s− 2)
=

3

2s
+

1

s2
− 9

2(3s− 2)

.

Then

x(t) =
3

4
+

1

2
t+

1

2
t2 − 3

4
e2t/3,

y(t) =
3

2
+ t− 3

2
e2t/3.
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7. The transform of the system is

sX + 2X − sY = 0, sX + Y +X =
2

s3
.

Then

X(s) =
2

s2(s2 + 2s+ 2)
=

1

s2
+

s+ 1

s2 + 2s+ 2
− 1

s
,

Y (s) =
2(s+ 2)

s3(s2 + 2s+ 2)
= − 1

s2
+

1

s2 + 2s+ 2
+

2

s3
.

The solution is

x(t) = t+ e−t cos(t)− 1

y(t) = −t+ e−t sin(t) + t2.

In inverting X(s) and Y (s), the terms involving s2 +2s+2 can be treated
by using a shifting theorem, expressing these as functions of s+ 1.

9. First,

sX + sY +X − Y = 0, sX + 2sY +X =
1

s
.

Then

X(s) =
1− s

s(s+ 1)2
=

−2

s+ 1)2
− 1

s+ 1
+

1

s
,

Y (s) =
1

s(s+ 1)
=

1

s
− 1

s+ 1
.

Then
x(t) = 1− e−t(2t+ 1), y(t) = 1− e−t.

11. The system transforms to

sX − 2sY + 3X = 0, X − 4sY + 3sZ =
1

s2
, X − 2sY + 3sZ = −1

s
.

Then

X(s) =
s+ 1

s2(s+ 3)
=

2

9s
− 2

9(s+ 3)
− 1

3s2
,

Y (s) = −1

2

s+ 1

s3
=
−1

2s3
− 1

2s2
,

Z(s) = −2

3

s2 + 3s+ 1

s3(s+ 3)
= − 2

9s
− 2

81s
+

2

81(s+ 3)
− 16

27s2
.

The solution is

x(t) =
2

9
+

1

3
t− 2

9
e−3t,

y(t) = −1

4
t(t+ 2)

z(t) = −16

27
t− 1

9
t2 − 2

81
+

2

81
e−3t.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



3.6. SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 51

13. The equations for the loop currents are

20i′1 + 10(i1 − i2) = E(t) = 5H(t− 5),

30i′2 + 10i2 + 10(i2 − i1) = 0.

Initial conditions are
i1(0) = i2(0) = 0.

Transform the system to obtain

I1(s) =
5(30s+ 20)e−5s

s(600s2 + 700s+ 100)

=

[
1

s
− 1

10(s+ 1)
− 27

5

1

6s+ 1

]
e−5s,

I2(s) =
50e−5s

s(600s2 + 700s+ 100)

=

[
1

2s
+

10

s+ 1
− 18

5

1

6s+ 1

]
e−5s.

Invert these to obtain the current functions:

i1(t) =

[
1− 1

10
e−(t−5) − 9

10
e−(t−5)/6

]
H(t− 5),

i2(t) =

[
1

2
+

1

10
e−(t−5) − 3

10
e−(t−5)/6

]
H(t− 5).

15. Using the notation of the preceding problem, we can write

x′1 = − 6

200
x1 +

3

100
x2,

x′2 =
4

200
x1 −

4

200
x2 + 5H(t− 3).

Initial conditions are x1(0) = 10, x2(0) = 5. Apply the transform to this
initial value problem and rearrange terms to obtain

(100s+ 3)X1 − 3X2 = 1000,

−2X1 + (100s+ 4)X2 = 500 + 500e−3s.

Solve these to get

X1(s) =
100000s+ 5500 + 1500e−3s

10000s2 + 700s+ 6

=
50

50s+ 3
+

900

100s+ 1
+

[
300

100s+ 1
− 150

50s+ 3

]
e−3s,
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and

X2(s) =
50000s+ 3500 + (50000s+ 1500)e−3s

10000s2 + 700s+ 6

= − 50

50s+ 3
+

600

100s+ 1
+

[
150

50s+ 3
+

200

100s+ 1

]
e−3s.

Apply the inverse transform to obtain the solution:

i1(t) = e−3t/50 + 9e−t/100 + 3(e−(t−3)/100 − e−3(t−3)/50)H(t− 3),

i2(t) = −e−3t/50 + 6e−t/100 + (3e−3(t−3)/50 + 2e−(t−3)/100)H(t− 3).
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Chapter 4

Sturm-Liouville Problems
and Eigenfunction
Expansions

4.1 Eigenvalues, Eigenfunctions and Sturm-Liouville
Problems

For these problems, an eigenfunction is found for each eigenvalue, and it is
understood that nonzero constant multiples of eigenfunctions are also eigen-
functions.

1. The problem is regular on [0, L]. To find the eigenvalues and eigenfunc-
tions, take cases on λ.

Case 1. If λ = 0, the differential equation is y′′ = 0, with solutions
y = a + bx. Now y(0) = a = 0, so y = bx. But then y′(L) = b = 0 also,
so this case has only the trivial solution and 0 is not an eigenvalue of this
problem.

Case 2. If λ is negative, say λ = −α2 with α > 0, then the differential
equation is

y′′ − α2y = 0

with general solution
y = c1e

αx + c2e
−αx.

Now
y(0) = c1 + c2 = 0,

so c2 = −c1 and

y(x) = c1
(
eαx − e−αx

)
= 2c1 sinh(αx).

53
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From the other boundary condition,

y′(L) = 2c1α cosh(αL) = 0.

But cosh(αL) > 0 and α > 0, so we must have c1 = 0 and this case also
has only the trivial solution. This problem has no positive eigenvalue.

Case 3. Suppose λ is positive, write λ = α2, with α > 0. Now the
differential equation is

y′′ + α2y = 0,

with general solution

y(x) = c1 cos(αx) + c2 sin(αx).

Immediately y(0) = c1 = 0, so

y(x) = c2 sin(αx).

From the other boundary condition, we must have

y′(L) = c2α cos(αL) = 0.

We need to be able to choose c2 6= 0 to have nontrivial solutions. This
requires that we α must be chosen to satisfy

cos(αL) = 0.

We know that the zeros of the cosine function have the form (2n− 1)π/2
for integer π, so let

αL =
(2n− 1)π

2
,

with n = 1, 2, · · · . Then acceptable values of α are

α =
(2n− 1)π

2L
.

Because λ = α2, the eigenvalues of this problem, indexed by n, are

λn =

(
(2n− 1)π

2L

)2

for n = 1, 2, · · · . Corresponding eigenfunctions are

ϕn(x) = sin

(
(2n− 1)π

2L
x

)
,

or any nonzero constant multiple of this function.
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3. The problem is regular on [0, L];

λn =

[(
n− 1

2

)
π

4

]2

is an eigenvalue for n = 1, 2, · · · , with eigenfunctions

ϕn(x) = cos

(
(2n− 1)π

8

)
.

5. The problem is periodic on [−3π, 3π]. Eigenvalues are

λ0 = 0 and λn =
n2

9
for n = 1, 2, · · · .

Eigenfunctions are

ϕn(x) = an cos(nx/3) + bn sin(nx/3)

for n = 0, 1, 2, · · · , with an and bn constant and not both zero.

7. The problem is regular on [0, 1]. The analysis to find eigenvalues and
eigenfunctions is similar to that done for Problem 6. Take cases on λ. It
is routine to check that λ = 0 or λ < 0 lead only to the trivial solution,
so the problem has no negative eigenvalue and zero is not an eigenvalue.
If λ = α2 for α > 0, then

y(x) = c1 cos(αx) + c2 sin(αx).

Using the first boundary condition,

y(0)− 2y′(0) = 0 = c1 − 2c2α

so c1 = 2αc2 and

y(x) = 2αc2 cos(αx) + c2 sin(αx).

Now use the boundary condition at 1:

y′(1) = −2α2c2 sin(α) + c2α cos(α) = 0.

For a nontrivial solution we need to be able to choose c2 nonzero. This
requires that

−2α sin(α) + cos(α) = 0,

or

tan(α) =
1

2α
.

Solutions of this equation must be numerically approximated. There are
infinitely many positive solutions α1 < α2 < · · · , and the eigenvalues are
λj = α2

j . The first four eigenvalues are

λ1 ≈ 0.42676, λ2 ≈ 10.8393, λ3 ≈ 40.4702, λ4 ≈ 89.8227.
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Corresponding eigenfunctions are

ϕn(x) = 2
√
λ cos(

√
λnx) + sin(

√
λnx).

9. The problem is regular on [0, π]. The differential equation can be written

y′′ + 2y′ + λy = 0.

and the characteristic equation has roots

−1±
√

1− λ.

Here it is convenient to take cases on 1− λ.

Case 1. If 1− λ = 0, then λ = 1 and the general solution is

y(x) = c1e
−x + c2xe

−x.

Now y(0) = c1 = 0, so y(x) = c2xe
−x. And

y(π) = 0 = c2πe
−π = 0

forces c2 = 0, so this case has only the trivial solution and 0 is not an
eigenvalue.

Case 2. If 1− λ is positive, say 1− λ = α2 with α > 0, then

y(x) = c1e
(−1+α)x + c2e

(−1−α)x.

Now
y(0) = c1 + c2 = 0

so c2 = −c1 and

y(x) = c1

(
e(−1+α)x − e(−1−α)x

)
.

Then
y(π) = c1

(
e(−1+α)π − e(−1−α)π

)
.

If c1 6= 0, this requires that

eαπ = e−απ,

which is impossible if α > 0. The problem has no negative eigenvalue.

Case 3. If 1− λ is negative, write 1− λ = −α2. Now

y(x) = c1e
−x cos(αx) + c2e

−x sin(αx).

Immediately y(0) = c1 = 0. Next,

y(π) = c2e
−π sin(απ) = 0.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



4.2. EIGENFUNCTION EXPANSIONS 57

To have c2 6= 0, we must choose

α =
√
λ− 1 = n,

any positive integer. Then λ = 1 + n2, so the eigenvalues are

λn = 1 + n2 for n = 1, 2, · · · .

Eigenfunctions are
ϕn(x) = e−x sin(nx).

4.2 Eigenfunction Expansions

In Problems 1–5, the weight function is p(x) = 1 (read from the differential
equation). In Problem 6 the differential equation must be put into standard
Sturm-Liouville form to read the weight function p(x) as the coefficient of λ.

In graphing partial sums of eigenfunctions and comparing them to the func-
tion, note the differences in the number of terms that must be taken to have the
partial sum fit reasonably close to the function. The convergence theorem does
not give any information about how fast an eigenfunction expansion converges
to the function.

1. It is routine to find the eigenfunctions

ϕn(x) = sin
(nπx

2

)
for this problem. The expansion has the form

∞∑
n=1

cn sin(nπx/2),

where

cn =

∫ 2

0
(1− ξ) sin(nπξ/2) dξ∫ 2

0
sin2(nπξ/2) dξ

.

These integrals are ∫ 2

0

sin2(nπξ/2) dξ = 1

and ∫ 2

0

(1− ξ) sin(nπξ/2) dξ =
2(1 + (−1)n)

nπ
.

The eigenfunction expansion on [0, 2] is

∞∑
n=1

2(1 + (−1)n)

nπ
sin(nπx/2).
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Figure 4.1: Comparison of 1−x and the fortieth partial sum of its eigenfunction
expansion on [0, 2].

Figure 4.1 shows a graph of f(x) = 1− x and the fortieth partial sum of
this expansion. By the convergence theorem, this expansion converges to
1 − x for 0 < x < 2. Clearly the expansion converges to 0 at both x = 0
and x = 2 because the eigenfunctions vanish there.

3. The eigenfunctions are

ϕn(x) = cos((2n− 1)πx/8).

The coefficients in the expansion of f(x) on [0, 4] are

cn =

∫ 2

0
− cos((2n− 1)πx/8) dx+

∫ 4

2
cos((2n− 1)πx/8) dx∫ 4

0
cos2((2n− 1)πx/8) dx

=
4

(2n− 1)π

[
(−1)n+1 +

√
2(cos(nπ/2)− sin(nπ/2))

]
.

The expansion has the form

∞∑
n=1

cn cos((2n− 1)πx/8).

Figure 4.2 compares f(x) with the sixtieth partial sum of this eigenfunc-
tion expansion. The theorem tells us that the expansion converges to f(x)
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Figure 4.2: Comparison of f(x) and the sixtieth partial sum of its eigenfunction
expansion on [0, 4].

on (0, 2) and on(2, 4), as well at to 0 at x = 0 (average of left and right
limits there).

5. The eigenfunctions are

ϕ0(x) = 1, ϕn(x) = an cos(nx/3) + bn sin(nx/3)

for n = 1, 2, · · · . The coefficients in the eigenfunction expansion of x2 on
[−3π, 3π] are

a0 =
1

6π

∫ 3π

−3π

ξ2 dξ = 3π2,

an =
1

3π
ξ2 cos(nξ/3) dξ =

36

n2
(−1)n,

bn =
1

3π

∫ 3π

−3π

ξ2 sin(nξ/3) dξ = 0.

The eigenfunction expansion is

3π2 + 36
∞∑
n=1

(−1)n

n2
cos(nx/3).

Figure 4.3 shows f(x) and the fifth partial sum of this eigenfunction expan-
sion. By the theorem, the expansion converges to x2 for −3π < x < 3π.
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Figure 4.3: Comparison of f(x) and the fifth partial sum of its eigenfunction
expansion in Problem 5.

7. Recall that the complex conjugate of z = a+ ib is z = a− ib. Suppose λ is
an eigenvalue of a Sturm-Liouville problem, with eigenfunction ϕ(x). By
taking the complex conjugate of the Sturm-Liouville differential equation
and appropriate boundary conditions, it is routine to check that λ is also
an eigenvalue with eigenfunction ϕ(x). If λ is complex and not real, then
λ 6= λ, so the eigenfunctions must be orthogonal with respect to the weight
function p, and ∫ b

a

p(x)ϕ(x)ϕ(x) dx = 0.

Now,

ϕ(x)ϕ(x) = |ϕ(x)|2,

so ∫ b

a

p(x)|ϕ(x)|2| dx = 0.

This is impossible because p(x) > 0 on (a, b) and ϕ(x) is continuous and
not identically zero on the interval. This contradiction shows that λ = λ,
so λ is real.
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4.3 Fourier Series

1. The Fourier series of f(x) = 4 on [−3, 3] has the form

1

2
a0 +

∞∑
n=1

[an cos(nπx/3) + bn sin(nπx/3)].

All that is left is to compute the coefficients. First, because f(x) is an
even function, each bn = 0. Compute

a0 =
2

3

∫ 3

−3

4 dx = 8

and, for n = 1, 2, · · · ,

an =
2

3

∫ 3

0

4 cos(nπx/3) dξ = 0.

With each an = 0 for n = 1, 2, · · · , the Fourier series is

1

2
a0 = 4.

This series consists of a single term, namely the constant term (which
seems obvious by hindsight, if not noticed immediately). This one-term
series converges to 4 on [−3, 3].

3. Because cosh(πx) is an even function, each bn = 0 in the Fourier series,
which will have the appearance

1

2
a0 +

∞∑
n=1

an cos(nπx).

Compute

a0 = 2

∫ 1

0

cosh(πx) dx
2

π
sinh(π)

and, for n = 1, 2, · · · ,

an = 2

∫ 1

0

cosh(πx) cos(nπx) dx =
2 sinh(π)

π

(−1)n

1 + n2
.

The Fourier series is

1

π
sinh(π) +

∞∑
n=1

2 sinh(π)

π

(−1)n

1 + n2
cos(nπx).

This series converges to cosh(πx) for −1 ≤ x ≤ 1. Figure 4.4 shows a
graph of f(x) and the eighth partial sum of this Fourier series.
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Figure 4.4: Comparison of f(x) and the eighth partial sum of the Fourier series
in Problem 3.

5. The Fourier series of f(x) on [−π, π] is

16

π

∞∑
n=1

1

(2n− 1)2
sin((2n− 1)x).

This series converges to 
−4 for −π < x < 0,

4 for 0 < x < π,

0 for x = 0,−π, π.

Figure 4.5 is a graph of f(x) and the twentieth partial sum of this Fourier
series.

7. The Fourier series of f(x) on [−2, 2] is

13

3
+
∞∑
n=1

(−1)n
[

16

(nπ)2
cos(nπx/2) +

1

nπ
sin(nπx/2)

]
.

This series converges to{
x2 − x+ 3 for −2 < x < 2,

7 for x = ±2.
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Figure 4.5: Comparison of f(x) and the twentieth partial sum of the Fourier
series in Problem 5.

At the endpoints,

1

2
(f(−2+) + f(2−)) =

1

2
(9 + 5) = 7.

Figure 4.6 shows f(x) and the twentieth partial sum of this Fourier series.

9. The Fourier series of f(x) on [−π, π] is

3

2
+

2

π

∞∑
n−1

1

2n− 1
sin((2n− 1)x).

This series converges to 
1 for −π < x < 0,

2 for 0 < x < π,

3/2 for x = 0,−π, π,

Figure 4.7 shows the function and the thirtieth partial sum of the Fourier
series in Problem 9.

11. The Fourier series of cos(x) on [−3, 3] is

1

3
sin(3) + 6 sin(3)

∞∑
n=1

(−1)n+1

π2n2 − 9
cos(nπx/3).
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Figure 4.6: Comparison of f(x) and the twentieth partial sum of the Fourier
series in Problem 7.

Figure 4.7: Comparison of f(x) and the thirtieth partial sum of the Fourier
series in Problem 9.
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Figure 4.8: Comparison of f(x) and the fifth partial sum of the Fourier series
in Problem 11.

This converges to cos(x) on [−3, 3]. Figure 4.8 is a graph of f(x) and the
fifth partial sum of this Fourier expansion on [−3, 3].

It might seem at first that cos(x) should be its own Fourier expansion,
but this problem illustrates the importance of the interval. If you expand
cos(x) in a Fourier series on [−π, π], you obtain just cos(x). But this is
not the expansion on [−3, 3].

13. The Fourier series of f(x) on [−3, 3] converges to

3/2 for x = ±3,

2x for −3 < x < −2,

−2 for x = −2,

0 for −2 < x < 1,

1/2 for x = 1,

x2 for 1 < x < 3.

15. The Fourier series converges to
−1 for x = ±4,

3/2 for x = −2,

5/2 for x = 2,

f(x) for all other x in [−4, 4].
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Figure 4.9: Comparison of f(x) and the thirtieth partial sum of the Fourier
cosine series in Problem 21.

17. The argument is like that used in Problem 16, except now use the fact
that f(−x) = −f(x).

19. Suppose f(x) is both even and odd on [−L,L]. Then, for every x in this
interval,

f(x) = f(−x) = −f(x).

But then f(x) = 0, so f(x) is identically zero on the interval.

21. The cosine series is

− 4

π

∞∑
n=1

(−1)n

2n− 1
cos((2n− 1)πx/2).

This converges to 
1 for 0 ≤ x < 1,

0 for x = 1,

−1 for 1 < x ≤ 2.

Figure 4.9 compares the function to the thirtieth partial sum of this cosine
series.
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Figure 4.10: Comparison of f(x) and the seventieth partial sum of the Fourier
sine series in Problem 21.

The sine series is

2

π

∞∑
n=1

(1 + (−1)n − 2 cos(nπ/2)) sin(nπx/2),

which converges to 
1 for 0 < x < 1,

0 for x = 0, 1, 2,

−1 for 1 < x < 2.

Figure 4.10 shows f(x) and the seventieth partial sum of this sine expan-
sion on [0, 2].

23. The cosine series is

1− 8

π2

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)πx),

converging to 2x for 0 ≤ x ≤ 1.

The sine series is

− 4

π

∞∑
n=1

(−1)n

n
sin(nπx),

converging to 2x for 0 < x < 1 and to 0 for x = 0 and for x = 1.
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25. The cosine series is

−1− e−1 + 2
∞∑
n=1

1− (−1)ne−1

1 + n2π2
cos(nπx),

converging to e−x for 0 ≤ x ≤ 1.

The sine series is

2π
∞∑
n=1

[
n

1 + n2π2
(1− (−1)ne−1)

]
sin(nπx),

converging to e−x for 0 < x < 1 and to 0 at x = 0 and at x = 1.

27. The cosine expansion is

−1

5
+

4

π

∞∑
n=1

1

n
cos(nπ/5) sin(2nπ/5) cos(nπx/5),

converging to 

1 for 0 ≤ x < 1,

1/2 for x = 1,

0 for 1 < x < 3,

−1/2 for x = 3,

−1 for 3 < x < 5.

Figure 4.11 shows the function and the sixtieth partial sum of this cosine
expansion.

The sine series is

4

π

∞∑
n=1

1

2n
(1 + (−1)n − 2 cos(nπ/5) cos(2nπ/5)) sin(nπx/5),

converging to 

1 for 0 < x < 1,

1/2 for x = 1,

0 for 1 < x < 3, x = 0, or x = 5,

−1/2 for x = 3,

−1 for 3 < x < 5.

Figure 4.12 shows f(x) and the one hundredth partial sum of its sine
expansion on [0, 5].

29. The cosine series is

−1− 24

π2

∞∑
n=1

1

n2

[
2(−1)n +

4

n2π2
(1− (−1)n)

]
cos(nπx/3),
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Figure 4.11: f(x) and the sixtieth partial sum of the cosine series in Problem
27.

Figure 4.12: Comparison of f(x) and the hundredth partial sum of the sine
series in Problem 27.
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converging to 1− x2 for 0 ≤ x ≤ 2.

The sine series is

2

π

∞∑
n=1

1

n

[
1 + 7(−1)n − 48

n2π2

]
sin(nπx/2).

This series converges to 1−x2 for 0 < x < 2 and to 0 at x = 0 and x = 2.
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Chapter 5

The Heat Equation

5.1 Diffusion Problems on a Bounded Medium

For the first three problems, separate the variables by letting u(x, t) = X(x)T (t).
The boundary conditions u(0, t) = u(L, t) = 0 leads to eigenvalues

λn =
n2π2

L2

for the separation constant, and corresponding eigenfunctions

Xn(x) = sin(nπx/L).

Corresponding solutions for T are

Tn(t) = e−n
2π2kt/L2

.

Solutions of these problems therefore all have the form

u(x, t) =
∞∑
n=1

cn sin(nπx/L)e−kn
2π2t/L2

,

in which cn is determined by the initial condition u(x, 0) = f(x) by

cn =
2

L

∫ L

0

f(ξ) sin(nπξ/L) dξ.

Therefore, for these problems, all we need do is evaluate these integrals for the
coefficients.

1. With f(x) = x(L− x),

cn =
2

L

∫ L

0

ξ(L− ξ) sin(nπξ/L) dξ =
4L2

n3π3
(1− (−1)n).

71
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The solution is

u(x, t) =
∞∑
n=1

4L2

n3π3
(1− (−1)n) sin(nıx/L)e−kn

2π2t/L2

.

We can also observe that

1− (−1)n =

{
0 if n is even,

2 if n is odd,

so the solution can also be written by summing over just the odd positive
integers. This can be done by replacing n with 2n− 1 in the summation:

u(x, t) =
8L2

π3

∞∑
n=1

1

(2n− 1)3
sin((2n− 1)πx/L)e−k(2n−1)2π2t/L2

.

3. Here k = 3 and f(x) = L(1− cos(2πx/L)). Compute

cn =
2

L

∫ L

0

L(1− cos(2πξ/L)) sin(nπξ/L) dξ =

{
8((−1)n−1)
nπ(n2−4) if n 6= 2,

0 for n = 2,

Because (−1)n − 1 = 0 if n is even, and −2 if n is odd, we actually have

cn = − 16L

nπ(n2 − 4)

for n = 1, 3, 5, · · · . We can write the solution as

u(x, t) = −16L

π

∞∑
n=1

1

(2n− 1)((2n− 1)2 − 4)
sin((2n−1)πx/L)e−3(2n−1)2π2t/L2

.

Problems 4–7 have insulated boundary conditions, so separation of variables
by putting u(x, t) = X(x)T (t) leads to eigenvalues and eigenfunctions λ0 =
1, X1 = 1 and, for n = 1, 2, · · · ,

λn =
n2π2

L2
, Xn(x) = cos(nπx/L).

We also find that
Tn(t) = e−kn

2π2t/L2

as in the case of boundary conditions u(0, t) = u(L, t) = 0. Now the solution
has the form

u(x, t) =
1

2
c0 +

∞∑
n=1

cn cos(nπx/L)e−kn
2π2t/L2

,

where

cn =
2

L
f(ξ) cos(nπξ/L) dξ.
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5. Now k = 4, L = 2π and f(x) = x(2π − x)2. The coefficients are

c0 =
1

π

∫ 2π

0

ξ(2π − ξ)2 dξ =
4

3
π3

and, for n = 1, 2, · · · ,

cn =
1

π

∫ 2π

0

ξ(2π − ξ)2 cos(nξ/2) dξ

= − 16

πn4
(n2π2 − 6(1− (−1)n)).

The solution is

u(x, t) =
2

3
π3

−
∞∑
n=1

16

π

n2π2 − 6(1− (−1)n)

n4
cos(nx/2)e−n

2t.

7. In this problem L = 6, k = 2 and f(x) = x cos(πx/4). The coefficients in
the solution are

c0 =
1

3

∫ 6

0

ξ cos(πξ/4) dξ = −8

3

2 + 3π

π2
,

and, for n = 1, 2, · · · ,

cn =
1

6

∫ 6

0

ξ cos(πξ/4) cos(nπξ/6) dξ

=
24(−18− 8n2 − 27π(−1)n + 12πn2(−1)n)

π2(2n− 3)2(2n+ 3)2
.

The solution is

u(x, t) = −4

3

2 + 3π

π2

+
∞∑
n=1

cn cos(nπx/6)e−n
2π2t/18.

9. The initial-boundary value problem for the temperature function is

ut = uxx for 0 < x < L, t > 0,

u(0, t) = ux(L, t) = 0,

u(x, 0) =
Bx

L
.

Separate variables by putting u(x, t) = X(x)T (t) to obtain

X ′′ + λX = 0;X(0) = X ′(L) = 0
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and
T ′′ + λkT = 0.

By taking cases on λ, we find the eigenvalues and corresponding eigen-
functions:

λn =

(
(2n− 1)π

2L

)2

and Xn(x) = sin((2n− 1)πx/2L).

Further,

Tn(x) = e−k(2n−1)2π2t/4L2

.

The solution has the form

u(x, t) =
∞∑
n=1

cn sin((2n− 1)πx/2L)e−k(2n−1)2π2t/4L2

.

The coefficients are

cn =
2

L

∫ L

0

B

L
ξ sin((2n− 1)πξ/2L) dξ

=
−8B

π2(2n− 1)2
(−1)n.

The solution is

u(x, t) = −8B

π2

∞∑
n=1

(−1)n

(2n− 1)2
sin((2n− 1)πx/2L)e−k(2n−1)2π2t/4L2

.

11. Make the transformation u(x, t) = eαx+βtv(x, t). Following the discussion
of the text, let α = −A/2 = −4/2 = −2 and β = k(B −A2/4) = −2 also,
so

u(x, t) = e−2x−2tv(x, t)

and v is the solution of the problem

vt = vxx for 0 < x < π, t > 0,

v(0, t) = v(π, t) = 0,

v(x, 0) = e2xu(x, 0) = xe2x(π − x).

This has the solution

v(x, t) =
∞∑
n=1

cn sin(nx)e−n
tt,

where

cn =
2

π

∫ π

0

ξe2ξ(π − ξ) sin(nξ) dξ

= − 4

π(4 + n2)3

[
24n− 2n3 + 16nπ + 4n3π − 24ne2π(−1)n

+2e2πn3(−1)n + 16nπe2π(−1)n + 4n3πe2π(−1)n
]
.
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The solution of the original problem is

u(x, t) = e−2x−2tv(x, t).

13. Here we have A = 6, B = 0, k = 1, L = π and u(x, 0) = f(x) = x(π − x).
Let α = 3 and β = −9 and let

u(x, t) = e3x−9tv(x, t).

The v(x, t) satisfies

vt = vxx for 0 < x < π, t > 0,

v(0, t) = v(π, t) = 0,

v(x, 0) = e−3xf(x) = x(π − x)e−3x.

The solution of this problem is

v(x, t) =

∞∑
n=1

cn sin(nx)e−n
2t,

where

cn =
2

π

∫ π

0

e−3ξξ(π − ξ) sin(nξ) dξ

=
4n

π(n2 + 9)3
(1− (−1)ne−3π)(3π(n2 + 9) + n2 − 27).

The original problem has the solution

v(x, t) = e3x−9tv(x, t).

15. Let u(x, t) = v(x, t) +ψ(x). To get a standard problem for v(x, t), choose
ψ(x) so that ψ′′ = 0 and

ψ(0) = T, ψ(L) = 0.

Then

ψ(x) =
T

L
(L− x)

The problem for v is

vt = kvxx for 0 < x < L, t > 0,

v(0, t) = v(L, t) = 0,

v(x, 0) = u(x, 0)− ψ(x) = x(L− x)2 − T

L
(L− x).

This has the solution

v(x, t) =
∞∑
n=1

cn sin(nπx/L)e−kn
2π2t/L2

,
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where

cn =
2

L

∫ L

0

[
ξ(1− ξ)2 − T

L
(L− ξ)

]
sin(nπx/L) dξ

=
2

n3π3

[
−n2π2T + 4L3 + 2L3(−1)n

]
.

17. Let u(x, t) = v(x, t) + h(x) and substitute this into the initial-boundary
value problem to choose h(x) and obtain a standard problem for v(x, t).
We find that

h(x) = T
(

1− x

L

)
and the problem for v(x, t) is

vt = 9vxx for 0 < x < L, t > 0,

v(0, t) = v(L, t) = 0,

v(x, 0) = −T
(

1− x

L

)
.

This has the solution

v(x, t) =
∞∑
n=1

cn sin(nπx/L)e−9n2π2t/L2

,

where

cn =
2

L

∫ L

0

−T
(

1− ξ

L

)
sin(nπξ/L) dξ = −2T

nπ
.

Then

u(x, t) = T
(

1− x

L

)
− 2T

π

∞∑
n=1

1

n
sin(nπx/L)e−9n2π2t/L2

.

5.2 The Heat Equation With a Forcing Term
F (x, t)

In Problems 1–5, notation of the text is used for Bn(t), bn and Tn(t). Note that
the second term in the solution for u(x, t) is the solution to the problem without
the forcing.

1. Here k = 4, L = π, f(x) = x(π − x) and F (x, t) = t. We need

Bn(t) =
2

π

∫ π

0

t sin(nξ) dξ =
2t

nπ
(1− (−1)n),

bn =
2

π

∫ π

0

f(ξ) sin(nξ) dξ =
4

nπ3
(1− (−1)n),

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



5.2. THE HEAT EQUATION WITH A FORCING TERM F (X,T ) 77

and

Tn(t) =

∫ t

0

e−4n2(t−τ)Bn(τ) dτ + bne
−4n2t

=
1

8πn5
(1− (−1)n)(−1 + 4n2t+ e−4n2t).

The solution is

u(x, t) =
∞∑
n=1

1

8πn5
(1− (−1)n)(−1 + 4n2t+ e−4n2t) sin(nx)

+
∞∑
n=1

4

πn3
(1− (−1)n) sin(nx)e−4n2t.

3. First,

Bn(t) =
2

5

∫ 5

0

t cos(ξ) sin(nπξ/5) dξ

=
2t

n2π2 − 25
((−1)n+1(nπ + 5) + nπ),

bn =
2

5

∫ 5

0

ξ2(5− ξ) sin(nπξ/5) dξ =
500

n3π3
((−1)n+1 − 1)

and

Tn(t) =
50(1− cos(5)(−1)n)

n3π3(n2π2 − 25)

(
n2π2t− 25 + 25e−n

2π2t/25
)
.

The solution is

u(x, t) =
∞∑
n=1

50(1− cos(5)(−1)n)

n3π3(n2π2 − 25)
(n2π2t− 25 + 25e−n

2π2t/25) sin(nπx/5)

+
∞∑
n=1

500

n3π3
((−1)n+1 − 1) sin(nπx/5)e−n

2π2t/25.

Sometimes a graphic can display features of a solution. This is done for
Problem 3 (Section 5.2). Figure 5.1 shows part of a surface plot of the solution
without the forcing term, and Figure 5.2 shows the solution with the forcing
term. In Figure 5.1, the temperature decreases quickly to zero, without the
introduction of new energy, while in Figure 5.2 this does not occur.

5. First compute

Bn(t) =
2

3

∫ 3

0

ξt sin(nπξ/3) dξ =
6t

nπ
(−1)n+1,
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Figure 5.1: Solution surface for Problem 3, without effects of the forcing term
included.

Figure 5.2: Solution surface for Problem 3, including effects of the forcing term.
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bn =
2

3

∫ 3

0

K sin(nπξ/3) dξ =
2K

nπ
(1− (−1)n),

and

Tn(t) =
27(−1)n+1

128n5π5
(16n2π2 − 9 + 9e−16n2π2t/9).

The solution is

u(x, t) =
∞∑
n=1

27(−1)n+1

128n5π5
(16n2π2 − 9 + 9e−16n2π2t/9) sin(nπx/3)

+
∞∑
n=1

2K

nπ
(1− (−1)n) sin(nπx/5)e−16n2π2t/9.

5.3 The Heat Equation on the Real Line

1. With f(x) = e−|x|, compute

aω =
1

π

∫ ∞
−∞

e−|ξ| cos(ωξ) dξ =
8

π

1

16 + ω2

and bω = 0 because f(x) is an even function on the real line. The solution
is

u(x, t) =
8

π

∫ ∞
0

1

16 + ω2
cos(ωx)e−ω

2kt.

The solution can also be written in the form

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−|ξ|e−(x−ξ)2/4kt dξ.

3. The coefficients are

aω =
1

π

∫ 4

0

ξ cos(ωξ) dξ =
1

πω2
(4ω sin(4ω) + cos(4ω)− 1)

and

bω =
1

π

∫ 4

0

ξ sin(ωξ) dξ =
1

πω2
(sin(4ω)− 4ω cos(4ω)).

The solution is

u(x, t) =

∫ ∞
0

(aω cos(ωx) + bω sin(ωx))e−ω
2kt dω.

We can also write

u(x, t) =
1

2
√
πkt

∫ 4

0

ξe−(x−ξ)2/4kt dξ.
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In each of Problems 5–8, the solution has the form

u(x, t) =

∫ ∞
0

[aω cos(ωx) + bω sin(ωx)]e−ω
2kt

and just aω and bω are given

5. aω = 0 because f(x) is an even function, and

bω =
4(1− cos(ω))

πω
.

7. Each bω = 0, while

aω =
2 cos(πω/2)

π(1− ω2)
.

9. Let

F (x) =

∫ ∞
0

e−ζ
2

cos(xζ) dζ.

By differentiating under the integral sign and then integrating by parts,
we obtain

F ′(x) =

∫ ∞
0

−ζe−ζ
2

sin(xζ) dζ

=
1

2
ζe−ζ

2

sin(xζ)

]∞
0

− 1

2
x

∫ ∞
0

e−ζ
2

cos(xζ) dζ

= −1

2
x

∫ ∞
0

e−ζ
2

cos(xζ) dζ

= −1

2
xF (x).

The linear differential equation

F ′(x) +
1

2
xF (x) = 0

has the general solution

F (x) = ke−x
2/4,

with k an arbitrary constant. However, we also know that

F (0) =

∫ ∞
0

e−ζ
2

dζ =
1

2

√
π,

an integral that can be found in tables and is widely used in statistics.
Therefore

F (x) =

∫ ∞
0

e−ζ
2

cos(xζ) dζ =
1

2

√
πe−x

2/4.
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Now let x = α/β to obtain∫ ∞
0

e−ζ
2

cos

(
αζ

β

)
dζ =

1

2

√
πe−α

2/4β2

.

Finally, this integral is half the value of the integral of the same function
from −∞ to ∞, so∫ ∞

−∞
e−ζ

2

cos

(
αζ

β

)
dζ =

√
πe−α

2/4β2

.

This is equation (5.17).

5.4 The Heat Equation on a Half-Line

In each of Problems 1–4, the initial condition is u(x, 0) = f(x) and the solution
has the form

u(x, t) =

∫ ∞
0

bω sin(ωx)e−kω
2t dω,

where

bω =
2

π

∫ ∞
0

f(ξ) sin(ωξ) dξ.

1. Compute

bω =
2

π

∫ ∞
0

e−αξ sin(ωξ) dξ =
2

π

ω

ω2 + α2
,

so the solution is

u(x, t) =
2

π

∫ ∞
0

ω

ω2 + α2
sin(ωx)e−kω

2t dω.

3. The coefficients are

bω =
2

π

∫ h

0

sin(ωξ) dξ =
2

π

1− cos(hω)

ω
,

and the solution is

u(x, t) =
2

π

∫ ∞
0

1− cos(hω)

ω
sin(ωx)e−kω

2t dω.

In Problems 5–8, the heat equation is to be solved on the half-line x > 0,
but the initial condition is now the insulation condition ux(x, 0) = f(x). Now
the solution is

u(x, t) =

∫ ∞
0

aω cos(ωx)e−ω
2kt dω,

where

aω =
2

π

∫ ∞
0

f(ξ) cos(ωξ) dξ.

We will just give aω for each problem.
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5.

aω =
2

π

∫ 4

0

ξ(ξ + 1) cos(ωξ) dξ

=
2

πω3
(20ω2 sin(4ω)− ω − 2 sin(4ω) + 9ω cos(4ω))

7.

aω =
2

π

∫ 9

5

4 cos(ωξ) dξ

=
8(sin(9ω)− sin(5ω))

πω

5.5 The Two-Dimensional Heat Equation

With the condition of zero initial temperature on the sides of the rectangle, and
initial temperature u(x, y, 0) = f(x, y), the solution is

∞∑
n=1

∞∑
n=1

cnm sin(nπx/L) sin(mπy/K)e−αnmkt,

where

αnm =
n2π2

L2
+
m2π2

K2

and

cnm =
4

LK

∫ L

0

∫ K

0

f(ξ, η) sin(nπξ/L) sin(mπη/K) dη dξ.

In the problems we will give the values of αnm and cnm for the particular initial
temperature function.

1. Here k = 1, L and K are positive numbers, and

f(x, y) = x(L− x)y2(K − y).

Because f(x, y) is a product of a function of x and a function of y, we
have

cnm =
4

LK

(∫ L

0

ξ(L− ξ) sin(nπξ/L) dξ

)(∫ K

0

η2(K − η) sin(mπη/K) dη

)

= − 16

L2K3
n3m3π6(1− (−1)n)(1 + 2(−1)m))

and

αnm =
n2π2

L2
+
m2π2

K2
.
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3. Now k = 1 and L = K = π, and

cnm =
4

π2

(∫ π

0

sin(ξ) sin(nξ) dξ

)(∫ π

0

η cos(η/2) cos(mη) dη

)
.

Now, ∫ π

0

sin(ξ) sin(nξ) dξ =

{
π/2 if n = 1,

0 for n = 2, 3, · · · .

Therefore, in the double summation for u(x, y, t), we have only c1m terms
and the summation is for m = 1 to ∞. Completing the computation of
the integrations with respect to η, we obtain

c1,m =
32m(−1)m+1

(4m2 − 1)2
.

Further,
α1m = 1 +m2.

The solution is

u(x, y, t) =
∞∑
m=1

32m(−1)m+1

(4m2 − 1)2
sin(x) sin(my)e−(1+m2)t.
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Chapter 6

The Wave Equation

6.1 Wave Motion on an Interval

For each of Problems 1–8, the problem involves the wave equation on [0, L], with
fixed ends, initial position y(x, 0) = f(x), and initial velocity yt(x, 0) = g(x).
The solution is

y(x, t) =
∞∑
n=1

[an cos(nπct/L) + bn sin(nπct/L)] sin(nπx/L),

where

an =
2

L

∫ L

0

f(ξ) sin(nπξ/L) dξ

and

bn =
2

nπc

∫ L

0

g(ξ) sin(nπξ/L) dξ.

1. Here c = 1, L = 2, the initial position is given by f(x) = 0, and the initial
velocity is

g(x) =

{
2x for 0 ≤ x ≤ 1,

0 for 1 < x ≤ 2.

In the general expression for the solution, then, we have an = 0 for n =
1, 2, · · · and

bn =
2

nπ

∫ 2

0

g(ξ) sin(nπξ/2)

=
2

nπ

∫ 1

0

2ξ sin(nπξ/2) dξ

=
8

n3π3
[2 sin(nπ/2)− nπ cos(nπ/2)].

85
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The solution is

y(x, t) =
8

π3

∞∑
n=1

1

n3
[2 sin(nπ/2)− nπ cos(nπ/2)] sin(nπx/2) sin(nπt/2).

3. Each an = 0 and

bb =
1

nπ

∫ 3

0

ξ(3− ξ) sin(nπx/3) dξ =
54

n4π4
(1− (−1)n).

The solution is

y(x, t) =
∞∑
n=1

54

n4π4
(1− (−1)n) sin(nπx/3) sin(2nπt/3).

Because (1 − (−1)n) is 2 if n is odd, and zero if n is even, we can also
write the solution by summing only over the odd positive integers. This
is achieved by replacing n with 2n − 1 in the expression being summed,
and replacing each (1− (−1)n) with 2:

y(x, t) =

∞∑
n=1

108

(2n− 1)4π4
sin((2n− 1)πx/3) sin(2(2n− 1)πt/3).

5. The solution is

y(x, t) =
24

π

∞∑
n=1

(−1)n+1

(2n− 1)2
sin((2n− 1)x/2) cos((2n− 1)

√
2t).

7. The solution is

y(x, t) = −32

π3

∞∑
n=1

1

(2n− 1)3
sin((2n− 1)πx/2) cos((3(2n− 1)πt/2)

+
4

π2

∞∑
n=1

1

n2
[cos(nπ/4)− cos(nπ/2)] sin(nπx/2) sin(3nπt/2).

9. Let y(x, t) = Y (x, t) + ψ(x) and substitute into the wave equation

ytt = Ytt = 3yxx + 2x = 3Yxx + 3ψ′′(x) + 2x.

Choose ψ(x) so that 3ψ′′(x) + 2x = 0. This means that

ψ(x) = −1

9
x3 + cx+ d.

Now,
y(0, t) = Y (0, t) + ψ(0) = 0
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so let d = 0 to have ψ(0) = 0. Then Y (0, t) = 0.

Next

y(2, t) = Y (2, t) + ψ(2) = Y (2, t)− 8

9
+ 2c = 0.

We will have Y (2, t) = 0 if c = 4/9. This means that

ψ(x) = −1

9
x3 +

4

9
x =

1

9
x(4− x2).

The problem for Y (x, t) is

Ytt = 3Yxx for 0 < x < 2, t > 0,

Y (0, t) = Y (2, t) = 0,

Y (x, 0) = y(x, 0)− ψ(x) =
1

9
x(x2 − 4).

The solution for Y (x, t) is

Y (x, t) =

∞∑
n=1

32

3

(−1)n

n3π3
sin(nπx/2) cos(nπ

√
t/2).

The original problem has the solution

y(x, t) = Y (x, t) +
1

9
x(4− x2).

11. Let y(x, t) = Y (x, t) +ψ(x). Substitute this into the wave equation to get

ytt = Ytt = yxx = Yxx + ψ′′(x)− cos(x).

This will give us Ytt = Yxx if ψ′′(x) = cos(x), which means that

ψ(x) = − cos(x) + cx+ d.

Now
y(0, t) = 0 = Y (0, t) + ψ(0) = −1 + d.

This will give us Y (0, t) = 0 if d = 1. Next,

y(2π, t) = 0 = Y (2π, t)− cos(2π) + 2πc+ 1.

This will give us Y (2π, 0) = 0 if c = 0. Then

ψ(x) = − cos(x) + 1.

Finally,
y(x, 0) = Y (x, 0)− cos(x) + 1 = 0

implies that Y (x, 0) = cos(x)− 1. And

yt(x, 0) = Yt(x, 0) = x.
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The problem for Y (x, t) is:

Ytt = Yxx for 0 < x < 2π, t > 0,

Y (0, t) = Y (2π, t) = 0,

Y (x, 0) = cos(x)− 1, Yt(x, 0) = x.

This has a solution of the form

Y (x, t) =
∞∑
n=1

[an cos(nt/2) + bn sin(nt/2)] sin(nx/2),

where

an =
1

π

∫ 2π

0

(cos(ξ)− 1) sin(nξ/2) dξ

=

{
16

nπ(n2−4) if n is odd,

0 if n is even,

and

bn =
2

π

∫ 2π

0

ξ sin(nξ/2) dξ =
8

n2
(−1)n+1.

These coefficients determine Y (x, t), and then y(x, t) = Y (x, t)+1−cos(x).

13. Let y(x, t) = Y (x, t) + ψ(x) and substitute this into the wave equation of
the problem to choose ψ(x) so that

7ψ′′(x) + e−x = 0, ψ(0) = ψ(2) = 0.

This leads to

ψ(x) = −1

7
e−x +

1

14
(e−2 − 1)x+

1

7
.

Now

Ytt = 7Yxx for 0 < x < 2, t > 0,

Y (0, t) = Y (2, t) = 0,

Y (x, 0) = −ψ(x), Yt(x, 0) = 5x.

This has the solution

Y (x, t) =
∞∑
n=1

[
an cos(nπ

√
7t/2) + bn sin(nπ

√
7t/2)

]
sin(nπx/2),

where

an =

∫ 2

0

(
1

7
e−ξ − 1

14
(e−2 − 1)ξ − 1

7

)
sin(nπξ/2) dξ

=
2

7nπ(4 + n2π2)
(−4− n2π2e−2(−1)n + e−1n2π2(−1)n + 4e−1(−1)n),
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and

bn =
2

nπ
√

7

∫ 2

0

5ξ sin(nπξ/2) dξ =
40(−1)n+1

n2π2
√

7
.

These coefficients determine Y (x, t), and then y(x, t) = Y (x, t) + ψ(x).

15. (a) Substitute y(x, t) = X(x)T (t) into the fourth-order differential equa-
tion to get

X(4) − λX = 0, T ′′ + λa4λT = 0,

with λ the separation constant. Note - by rearranging terms differently,
we can reach different separated equations for X and T . For example, we
could have kept the a4 factor with the X terms.

(b) Consider cases on λ, noting that the boundary conditions are

X ′′(0) = X ′′(π) = X(3)(0) = X(3)(π) = 0.

Case 1 - Suppose λ = 0. Then X(4)(x) = 0 and four integrations give us

X(x) = A+Bx+ Cx2 +DX3.

The boundary conditions force C = D = 0, while A and B are arbitrary.
Therefore 0 is an eigenvalue of this problem, with eigenfunctions X0(x) =
A + Bx, with A and B not both zero. In this case solutions for T are
T (t) = α+ βt.

Case 2 - Suppose λ < 0. The notation is simplified if we set λ = −4α4,
with α > 0. The differential equation for X is

X(4) + 4α4X = 0,

with characteristic equation r4 + 4α4 = 0. This has roots

(1 + i)α, (1− i)α, (−1 + i)α and (−1− i)α.

In this case solutions are

X(x) = eαx(A cos(αx) +B sin(αx)) + e−αx(C cos(αx) +D sin(αx)).

Apply the boundary conditions to this general solution to obtain:

B −D = 0,

A−B − C −D = 0,

−Aeαπ sin(απ) +Beαπ cos(απ) + Ce−απ sin(απ)−De−απ cos(απ) = 0,

−Aeαπ(cos(απ) + sin(απ)) +Beαπ(cos(απ)− sin(απ))

− Ce−απ(cos(απ)− sin(απ))−De−απ(cos(απ) + sin(απ)) = 0.
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This is a 4 × 4 homogeneous system of linear algebraic equations. This
system has a nontrivial solution if and only if the determinant of the
coefficients is zero:

cosh(2απ)− cos(2απ) = 0.

But this equation is satisfied only by α = 0, and in this case α > 0.
Therefore the system has only the trivial solution A = B = C = D = 0,
and this problem has no negative eigenvalue.

Case 3 - Suppose λ > 0, say λ = α4 with α > 0. Now X(4) − α4X = 0,
and the characteristic equation has roots

α,−α, αi,−αi.

The general solution is

X(x) = A cos(αx) +B sin(αx) + C cosh(αx) +D sinh(αx).

The boundary conditions give us four equations:

−A+ C = 0,

−A cos(απ)−B sin(απ) + C cosh(απ) +D sinh(απ) = 0,

−B +D = 0,

A sin(απ) +B cos(απ) + C sinh(απ +D cosh(απ) = 0.

From the first and third equations, A = C and B = D. This reduces the
system to the second and fourth equations in two unknowns:

C(cosh(απ)− cos(απ)) +D(cosh(απ)− sin(απ)) = 0,

C(sinh(απ) + sin(απ)) +D(cosh(απ)− cos(απ)) = 0.

This 2× 2 system has a nontrivial solution if and only if the determinant
of the system is nonzero. This requires that

cos(απ) cosh(απ) = 1.

It may not be obvious, but this equation has infinitely many positive
solutions for α (two are 2.499752670 and 0.000000207171091). If these
solutions for α are listed α1 < α2 < · · · , then λn = α4

n is an eigenvalue of
the problem. Eigenfunctions then have the form

Xn(x) = A cos(αnx) +B sin(αnx) + C cosh(αnx) +D sinh(αnx).

6.2 Wave Motion in an Unbounded Medium

For the wave equation on a the real line,

ytt = c2yxx for −∞ < x <∞, t > 0,

y(x, 0) = f(x), yt(x, 0) = 0,
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specifying an initial position but zero initial velocity, a solution can be found
very much like the problem for an interval [0, L], with Fourier integrals replacing
the Fourier series seen in the bounded interval case. The solution is

y(x, t) =

∫ ∞
0

[aω cos(ωx) + bω sin(ωx)] cos(ωct) dω,

where

aω =
1

π

∫ ∞
−∞

f(ξ) cos(ωξ) dξ

and

bω =
1

π

∫ ∞
−∞

f(ξ) sin(ωξ) dξ.

If y(x, 0) = 0 and yt(x, 0) = g(x) (string released without initial displacement,
but with initial velocity g(x)), then the solution is

y(x, t) =

∫ ∞
0

[αω cos(ωx) + βω sin(ωx)] sin(ωct) dω,

where

αω =
1

πωc

∫ ∞
−∞

g(ξ) cos(ωξ) dξ

and

βω =
1

πωc

∫ ∞
−∞

g(ξ) sin(ωξ) dξ.

If the problem has f(x) and g(x) both nonzero, then the solution is the sum of
the solution with zero initial velocity, and the solution with no initial displace-
ment.

1. With c = 5, f(x) = e−5|x| and g(x) = 0, compute

aω =
1

π

∫ ∞
−∞

e−5|ξ| cos(ωξ) dξ =
10

(25 + ω2)π

and bω = 0 because f(x) is an even function. The solution is

y(x, t) =
10

π

∫ ∞
0

(
1

25 + ω2

)
cos(ωx) cos(12ωt) dω.

3. Compute the coefficients to determine the solution

y(x, t) =

∫ ∞
0

(
− sin(πω)

2πω(ω2 − 1)

)
sin(ωx) sin(4ωt) dω.

5. The solution is

y(x, t) =

∫ ∞
0

[αω cos(ωx) + βω sin(ωx)] sin(3ωt) dω,
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where

αω =
1

3πω

∫ ∞
1

e−2ξ cos(ωξ) dξ =
1

3e2πω

2 cos(ω)− ω sin(ω)

4 + ω2

and

βω =
1

3πω

∫ ∞
1

e−2ξ sin(ωξ) dξ =
1

3e2πω

2 sin(ω) + ω cos(ω)

4 + ω2
.

7. The solution for the problem with the given displacement and zero initial
velocity is

y1(x, t) =

∫ ∞
0

[aω cos(ωx) + bω sin(ωx)] cos(7ωt) dω,

where

aω =
1

π

∫ 5

−1

f(ξ) cos(ωξ) dξ

=
sin(ω)− 2 sin(2ω) + 3 sin(5ω)

πω

and

bω =
1

π

∫ 5

−1

f(ξ) sin(ωξ) dξ

=
cos(ω) + 2 cos(2ω)− 3 cos(5ω)

πω
.

The solution for the problem with the given velocity, but zero initial dis-
placement, is

y2(x, t) =

∫ ∞
0

[αω cos(ωx) + βω sin(ωx)] sin(7ωt) dω,

where

αω =
1

7πω

∫ 1

−1

e−|ξ| cos(ωξ) dξ

= − 2

7π(1 + ω2)
(e−1 cos(ω)− ωe−1 sin(ω)− 1)

and

βω =
1

7πω

∫ 1

−1

e−|ξ| sin(ωξ) dξ = 0.

The solution of the problem with initial displacement f(x) and initial
velocity g(x) is

y(x, t) = y1(x, t) + y2(x, t).
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9. Following the notation of Problems 7 and 8, form y1(x, t) with coefficients

aω =
1

π

∫ 2

−2

ξ cos(ωξ) dξ = 0

and

bω =
1

π

∫ 2

−2

ξ sin(ωξ) dξ

=
2 sin(2ω)− 4 cos(2ω)

πω2
.

And y2(x, t) has coefficients

αω =
4

πω

∫ 3

−3

ξ2 cos(ωξ) dξ

=
8

πω4
(9ω2 sin(3ω)− 2 sin(3ω) + 6ω cos(3ω))

and βω = 0.

The solution is

y(x, t) =

∫ ∞
0

an cos(ωx) cos(ωt/4)

+

∫ ∞
0

βω sin(ωx) sin(ωt/4).

For the problem on a half-line [0,∞), there is a boundary condition which
we will take to be

y(0, t) = 0

along with initial conditions

y(x, 0) = f(x), yt(x, 0) = g(x)

for x > 0. The solution has the form

y(x, t) =

∫ ∞
0

[Aω cos(ωct) +Bω sin(ωct)] sin(nωx) dω,

where

Aω =
2

π

∫ ∞
0

f(ξ) sin(ωξ) dξ

and

Bω =
2

π

∫ ∞
0

g(ξ) sin(ωξ) dξ.
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11. Here Aω = 0 and

Bω =
2

3πω

∫ 11

4

2 sin(ωξ) dξ

=
4(cos(4ω)− cos(11ω))

3πω2
.

The solution is

y(x, t) =
4

3π

∫ ∞
0

cos(4ω)− cos(11ω)

ω2
sin(ωx) sin(3ωt) dω.

13. With g(x) = 0, Bω = 0 and

Aω =
2

π

∫ ∞
0

−2e−ξ sin(ωξ) dξ

= − 4ω

π(1 + ω2)
.

The solution is

y(x, t) = − 4

π

∫ ∞
0

ω

1 + ω2
sin(ωx) cos(6ωt) dω.

15. Compute

Aω =
2

π

∫ 1

0

f(ξ) sin(ωξ) dξ

=
2 sin(ω)

π2 − ω2

and

Bω =
2√

13πω

∫ 4

0

g(ξ) sin(ωξ) dξ

=
2√

13πω2
(1− 2 cos(ω) + cos(4ω)).

The solution is

y(x, t) =

∫ ∞
0

[Aω cos(
√

13ωt) +Bω sin(
√

13ωt)] sin(ωx) dω.
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6.3 d’Alembert’s Solution and Characteristics

1. The characteristics are the lines x − t = k1 and x + t = k2, with k1 and
k2 arbitrary real numbers. d’Alembert’s solution of the problem is

y(x, t) =
1

2
[(x− t)2 + (x+ t)2] +

1

2

∫ x+t

x−t
−ξ dξ

=
1

2
[x2 − 2xt+ t2 + x2 + 2xt+ t2 −

[
1

2
ξ2

]x+t

x−t

= x2 − xt+ t2.

3. characteristics: x− 7t = k1, x+ 7t = k2;

y(x, t) =
1

2
[cos(π(x− 7t)) + cos(π(x+ 7t))] + t− x2t− 49

3
t3

This solution can also be written

y(x, t) =
1

2
cos(πx) cos(7πt) + t− x2t− 49

3
t3.

5. characteristics: x− 14t = k1, x+ 14t = k2;

y(x, t) =
1

2

[
ex−14t + ex+14t

]
+ xt

= ex cosh(14t) + xt.

7. characteristics x−
√

3t = k1, x+
√

3t = k2;

y(x, t) =
1

2

[
e−3|x−

√
3t| + e−3|x+

√
3t|
]

+
1√
3

[
sin

(
x+
√

3t

2

)
− sin

(
x−
√

3t

2

)]

9. The solution with y(x, 0) = f(x) = sin(x) is

y(x, t) =
1

x
(sin(x− t) + sin(x+ t)).

With y(x, 0) = sin(x) + ε, the solution is

yε(x, t) =
1

2
sin(x− t) + ε+ sin(x+ t) + ε = y(x, t) + ε.

11. Now

y(x, t) = e−3(x−ct) + sin(4(x+ ct)

= e−3xe3ct + sin(4(x+ ct)).
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Figure 6.1: y(x, 0), Problem 13.

Then

yx = −3e−3xe3ct + 4 cos(4(x+ ct)),

yxx = 9e−3xe3ct − 16 sin(4(c+ ct)),

yt = 3ce−3xe3ct + 4c cos(4(x+ ct)),

ytt = 9c2e−3xe3ct − 16c2 sin(4(x+ ct)).

It is easy to check that ytt = c2yxx.

In each of Problems 12–17, with c = 1 and g(x) = 0, the forward wave is
F (x, t) = 1

2f(x− t) and the backward wave is B(x, t) = 1
2f(x+ t). The solution

is
y(x, t) = F (x, t) +B(x, t).

13. Figures 6.1–6.6 show graphs of y(x, t) for times

t = 0,
1

2
,

3

4
,

7

8
, 1,

3

2
.

15. Figures 6.7–6.12 show graphs of y(x, t) for

t = 0,
1

4
,

1

2
,

3

4
, 1,

3

2
.

17. Figure 6.13 shows a graph of y(x, 0), while Figures 6.14 - 6.19 show y(x, t)
for times

t =
1

4
,

1

2
,

3

4
,

5

4
,

7

4
,

5

2
.

19. We know that

y(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



6.3. D’ALEMBERT’S SOLUTION AND CHARACTERISTICS 97

Figure 6.2: y(x, 1/2), Problem 13.

Figure 6.3: y(x, 3/4), Problem 13.

Figure 6.4: y(x, 7/8), Problem 13.
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Figure 6.5: y(x, 1), Problem 13.

Figure 6.6: y(x, 3/2), Problem 13.

Figure 6.7: y(x, 0), Problem 15.
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Figure 6.8: y(x, 1/4), Problem 15.

Figure 6.9: y(x, 1/2), Problem 15.

Figure 6.10: y(x, 3/4), Problem 15.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



100 CHAPTER 6. THE WAVE EQUATION

Figure 6.11: y(x, 1), Problem 15.

Figure 6.12: y(x, 3/2), Problem 15.
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Figure 6.13: y(x, 0), Problem 17.

and

ỹ(x, t) =
1

2
(f̃(x− ct) + f̃(x+ ct)) +

1

2c
g̃(ξ) dξ.

Then

y(x, t)− ỹ(x, t)

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ

− 1

2

(
f̃(x− ct) + f̃(x+ ct)

)
− 1

2

∫ x+ct

x−ct
g̃(ξ) dξ

=
1

2
(f(x− ct)− f̃(x− ct)) +

1

2
(f(x+ ct)− f̃(x+ ct))

+
1

2c

∫ x+ct

x−ct
(g(ξ)− g̃(ξ)) dξ.

Then

|y(x, t)− ỹ(x, t)|

≤ 1

2
|f(x− ct)− f̃(x− ct)|+ 1

2
|f(x+ ct)− f̃(x+ ct)|

+
1

2c

∫ x+ct

x−ct
|g(ξ)− g̃(ξ)| dξ

≤ 1

2
ε1 +

1

2
ε1 +

1

2c

∫ x+ct

x−ct
ε2 dξ

≤ ε1 +
1

2c
ε2((x+ ct)− (x− ct))

= ε1 + ε2t.
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Figure 6.14: y(x, 1/4), Problem 17.

Figure 6.15: y(x, 1/2), Problem 17.
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Figure 6.16: y(x, 3/4), Problem 17.

6.4 The Wave Equation With a Forcing Term
K(x, t)

1. Here c = 4, f(x) = x, g(x) = e−x and K(x, t) = x+ t. The solution is

y(x, t) =
1

2
((x− 4t) + (x+ 4t)) +

1

8

∫ x+4t

x−4t

e−ξ dξ

+
1

8

∫ t

0

∫ x+4t−4T

x−4t+4T

(X + T ) dX dT

= x+
1

8

(
e−x+4t − e−x−4t

)
+

∫ t

0

(xt− xT + tT − T 2) dT

= x+
1

8
e−x

(
e4t − e−4t

)
+

1

6
t3 +

1

2
xt2.

We can also write this solution as

y(x, t) = x+
1

4
e−x sinh(4t) +

1

6
t3 +

1

2
xt2.
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Figure 6.17: y(x, 5/4), Problem 17.

Figure 6.18: y(x, 7/4), Problem 17.

Figure 6.19: y(x, 5/2), Problem 17.
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3. The solution is

y(x, t) =
1

2
(f(x− 8t) + f(x+ 8t)) +

1

16

∫ x+8t

x−8t

cos(2ξ) dξ

+
1

16

∫ t

0

∫ x+8t−8T

x−8t+8T

XT 2 dX dT

= x2 + 64t2 − x+
1

32
(sin(−2x+ 16t) + sin(2x+ 16t))

+

∫ t

0

−xT 2(−t+ T ) dT

= x2 + 64t2 − x+
1

32
(sin(−2x+ 16t) + sin(2x+ 16t)) +

1

32
xt4.

5.

y(x, t) =
1

2
(cosh(x− 3t) + cosh(x+ 3t)) +

1

6

∫ x+3t

x−3t

dξ

+
1

6

∫ t

0

∫ x+3t−3T

x−3t+3T

3XT 3 dX dT

=
1

2
(cosh(x− 3t) + cosh(x+ 3t)) + t+

∫ t

0

−3xT 3(T − t) dT

=
1

2
(cosh(x− 3t) + cosh(x+ 3t)) + t+

3

20
xt5.

6.5 The Wave Equation in Higher Dimensions

For Problems 1–3 the solution has the form

z(x, y, t) =
∞∑
n=1

∞∑
m=1

anm sin(nπx/L) sin(mπy/K) cos(αnmπct),

where

αnm =

√
n2

L2
+
m2

K2

and

anm =
4

LK

∫ L

0

∫ K

0

f(ξ, η) sin(nπξ/L) sin(mπη/K) dη dξ.

1. Because f(x, y) = x2y is a product of a function of x and a function of y,
we can compute the coefficients as a product of integrals:

anm =
1

π2

∫ 2π

0

ξ2 sin(nξ/2) dξ

∫ K

0

η sin(mη/2) dη

=
32(−1)m

mn3π

(
2(1− (−1)n) + n2π2(−1)n

)
.
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Further,

αnm =
1

2π

√
n2 +m2.

Because c = 1, the solution is

z(x, y, t) =
∞∑
n=1

∞∑
m=1

32(−1)m

mn3π
(2(1− (−1)n)

+ n2π2(−1)n
)

sin(nx/2) sin(my/2) cos(
√
n2 +m2t/2).

3. We have c = 1, L = K = π and f(x, y) = xey. A routine integration yields

anm =
4

π2

∫ π

0

ξ sin(nξ) dξ

∫ π

0

eη sin(mη) dη

=
4(−1)n+1m

πn2(m2 + 1)
(1− eπ(−1)m).

Further,

αnm =
1

π

√
n2 +m2.

The solution is

z(x, y, t) =
∞∑
n=1

∞∑
m=1

anm sin(nx) sin(my) cos(2
√
n2 +m2t).

5. Suppose c = 3, L = K = π, f(x, y) = 0 and g(x, y) = xy. Now

αnm =
1

π

√
n2 +m2.

Compute

bnm =
4

3
√
n2 +m2

(−1)n+m

nm
.

The solution is

z(x, y, t) =
∞∑
n=1

∞∑
m=1

bnm sin(nx) sin(mx) cos(3
√
n2 +m2t).
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Chapter 7

Laplace’s Equation

7.1 The Dirichlet Problem for a Rectangle

1. Substitute u(x, y) = X(x)Y (y) into Laplace’s equation to obtain

X ′′ + λX = 0;X(0) = X(1) = 0

and
Y ′′ − λY = 0;Y (π) = 0.

Solutions for X are

λ = n2π2, Xn(x) = sin(nπx).

With these values of λ, the problem for Y (y) has solutions that are con-
stant multiples of sinh(nπ(π−y). To find a solution satisfying the bound-
ary condition u(x, 0) = sin(πx), use a superposition

u(x, y) =
∞∑
n=1

an sin(nπx) sinh(nπ(π − y)).

We need

u(x, 0) =
∞∑
n=1

an sin(πx) sinh(nπ2) = sin(πx).

We can compute the Fourier coefficients of this sine expansion, or simply
observe that we can take an = 0 for n = 2, 3, · · · and

a1 =
1

sinh(π2)
.

The solution is

u(x, y) =
1

sinh(π2)
(sin(πx) sinh(π(π − y))).

107
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3. After separating the variables and applying the boundary conditions, we
find that the solution has the form

u(x, y) =
∞∑
n=1

an
sinh(nπy)

sinh(4nπ)
sin(nπx).

The coefficients must be determined so that

u(x, 4) =
∞∑
n=1

an sin(nπx) = x cos(πx/2).

This is a Fourier sine expansion of x cos(πx/2) on [0, 1]. Choose the coef-
ficients as

an = 2

∫ 1

0

ξ cos(πξ/2) sin(nπξ) dξ =
32n(−1)n+1

π2(4n2 − 1)2
.

These determine the solution.

5. There are nonhomogeneous boundary conditions on two sides of the rect-
angle, so write

u(x, y) = v(x, y) + w(x, y)

where

∇2v = 0; v(0, y) = v(π, y) = v(x, 0) = 0, v(x, π) = x sin(πx)

and

∇2w = 0;w(x, 0) = w(x, π) = w(0, y) = 0, w(w, y) = sin(y).

These are defined on 0 < x < 2, 0 < y < π. Solve these problems inde-
pendently.

First, separate variables in the problem for w to find that it has a solution
of the form

w(x, y) =
∞∑
n=1

bn sin(ny)
sinh(nx)

sinh(2n)
.

Observe that we can solve this problem for w by taking b1 = 1 and all
other bn = 0, so

w(x, y) = sin(y)
sinh(x)

sinh(2)
.

The problem for v has a solution of the form

v(x, y) =
∞∑
n=1

an sin(nπx/2)
sinh(nπy/2)

sinh(nπ2/2)
.

We need

v(x, π) = x sin(πx) =
∞∑
n=1

an sin(nπx/2).

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



7.1. THE DIRICHLET PROBLEM FOR A RECTANGLE 109

This is a Fourier sine expansion of x sin(πx) on [0, 2], so choose

bn =

∫ 2

0

ξ sin(nξ) sin(nπξ/2) dξ

=

{
16n

π2((n2−4)2) ((−1)n − 1) for n = 1, 3, 4, 5, · · · ,
1 for n = 2.

Then

v(x, y) = sin(πx)
sinh(πy)

sinh(π2)

+
10

π2

∞∑
n=1,n6=2

n

(n2 − 4)2
((−1)n − 1) sin(nπx/2)

sinh(nπy/2)

sinh(nπ2/2)
.

7. Separation of variables and the zero boundary conditions on x = 0, x = a
and y = 0 yield a general form of the solution:

u(x, y) =
∞∑
n=1

an sin((2n− 1)πx/2a)
sinh((2n− 1)πy/2a)

sinh((2n− 1)πb/2a)
.

Now we need

u(x, 0) = f(x) =
∞∑
n=1

an sin((2n− 1)πx/2a).

This leads us to choose

an =
2

a

∫ a

0

f(ξ) sin((2n− 1)πξ/2a) dξ.

9. Write the solution as u(x, y) = v(x, y) + w(x, y), where v is the solution
of the problem

∇2v = 0, v(x, 0) = v(x, 1) = v(4, y) = 0, v(0, y) = sin(πy),

and w is the solution of

∇2(w) = 0, w(x, 0) = w(x, 1) = w(0, y) = 0, w(4, y) = y(1− y).

These problems are defined on 0 ≤ x ≤ 4, 0 ≤ y ≤ 1. A separation of
variables yields a general form of the solution of the problem for v:

v(x, y) =
∞∑
n=1

an sin(nπy)
sinh(nπ(4− x))

sinh(4nπ)
.

We need

v(0, y) = sin(πy) =
∞∑
n=1

an sin(nπy),
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so by observation we can let a1 = 1 and an = 0 for n = 2, 3, · · · . Then

v(x, y) = sin(πy)
sinh(π(4− x))

sinh(4π)
.

Another separation of variables leads to a general form of the solution for
w:

w(x, y) =
∞∑
n=1

bn sin(nπy) sinh(nπx).

Then

w(4, y) = y(1− y) =
∞∑
n=1

bn sinh(4nπ) sin(nπy),

so

bn =
2

sinh(4nπ)

∫ 1

0

ξ(1− ξ) sin(nπξ) dξ

=
4(1− (−1)n)

n3π3 sinh(4nπ)
.

7.2 The Dirichlet Problem for a Disk

For each of Problems 1–8, a solution

u(r, θ) =
1

2
a0 +

∞∑
n=1

( r
R

)n
[an cos(nθ) + bn sin(nθ)],

where

an =
1

πRn

∫ π

−π
f(ξ) cos(nξ) dξ

for n = 0, 1, 2, · · · and

bn =
1

πRn

∫ π

−π
f(ξ) sin(nξ) dξ

for n = 1, 2, · · · .

1. We can see by observation that u(r, θ) = 1 is a solution. This can also be
obtained the long way by carrying out the integrations, obtaining a0 = 2
and an = bn = 0 for n = 1, 2, · · · .

3. Calculate

a0 =
1

π

∫ π

−π
(ξ2 − ξ) dξ =

2π2

3
,

an =
1

2nπ

∫ π

−π
(ξ2 − ξ) cos(nξ) dξ =

4(−1)n

n22n
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and

bn =
1

2nπ

∫ π

−π
(ξ2 − ξ) sin(nξ) dξ =

2(−1)n

n2n
.

The solution is

u(r, θ) =
π2

3
+ 2

∞∑
n=1

(r
2

)n (−1)n

n2
[2 cos(nθ) + n sin(nθ)].

5. The solution is

u(r, θ) =
sinh(π)

π
+

2

π

∞∑
n=1

(−1)n

n2 + 1

(r
4

)n
sinh(π)[cos(nθ) + n sin(nθ)].

7. After the integrations, we obtain the solution

u(r, θ) = 1− 1

3
π2 +

∞∑
n=1

4(−1)n+1

n2

(r
8

)n
cos(nθ).

9. Let U(r, θ) = u(r cos(θ), r sin(θ). The problem given in rectangular coor-
dinates converts to the following problem in polar coordinates:

∇2U(r, θ) = 0 for 0 ≤ r < 4, U(4, θ) = 16 cos2(θ).

If we write 16 cos2(θ) = 8(1+cos(2θ), we can recognize by inspection that

1

2
a0 = 8, a2(42) = 8,

and all other an = 0. The solution in polar coordinates is

U(r, θ) = 8 + 8
(r

4

)2

cos(2θ).

Because the original problem was posed in rectangular coordinates, con-
vert this to rectangular coordinates by using x = r cos(θ), y = r sin(θ),
and the identity cos(2θ) = 2 cos2(θ)− 1, to obtain

u(x, y) = 8 +
1

2
(x2 − y2).

11. In polar coordinates this problem is

∇2U(r, θ) = 0 for 0 ≤ r < 2, U(2, θ) = 4(cos2(θ)− sin2(θ)) = 4 cos(2θ).

Identify a222 = 4, with all other coefficients zero, so

U(r, θ) = r2 cos(2θ).

In rectangular coordinates the solution is

u(x, y) = x2 − y2.
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7.3 The Poisson Integral Formula

In Problems 1–4 the idea is to use the Poisson integral formula to write the re-
quested solution value as an integral which can be approximated by a numerical
technique. This assumes the availability of software that will do this.

For Problem 1, the Poisson integrals are given for each approximate value
calculated. For Problems 2, 3 and 4, we give just the approximate values.

1. With R = 1 and f(θ) = θ, the solution is

U(r, θ) =
1

2π

∫ pi

−π

1− r2

1 + r2 − 2r cos(ξ − θ)
ξ dξ.

Then

U(1/2, π) =
1

2π

∫ π

−π

3ξ

5− 4 cos(ξ − π)
dξ = 0.

Next,

U(3/4, π/3) =
1

2π

∫ π

−π

7ξ

25− 14 cos(ξ − π/3)
dξ ≈ 0.8826128645.

And

U(1/5, π/4) =
1

2π

∫ π

−π

24ξ

26− 10 cos(ξ − π/4)
dξ ≈ 0.2465422.

3. U(4, π) ≈ −16.4654, U(12, π/6) ≈ 0.0694, U(8, π/4) ≈ 1.5281

7.4 The Dirichlet Problem for Unbounded Re-
gions

1. If we put f(ξ) = K in equation (7.7), we get the solution

u(x, y) =
Ky

π

∫ ∞
−∞

1

y2 + (ξ − x)2
dξ

=
Ky

π
lim
L→∞

∫ L

−L

1

y2 + (ξ − x)2
dξ

=
K

π
lim
L→∞

arctan

(
L− x
y

)
− arctan

(
−L− x

y

)
=
K

π

(π
2

+
π

2

)
= K.

Or, we can avoid this computation by observing that u(x, y) = K is har-
monic on the entire plane, and equals K on the real line (the boundary of
the upper half-plane). Therefore the solution is u(x, y) = K.
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3. By equation (7.7), the solution is

u(x, y) =
y

π

∫ ∞
−∞

ξ

y2 + (ξ − x)2
dξ.

5. Suppose u(x, y) is harmonic on the upper half-plane and u(x, 0) = f(x).
Then the function v(x, y) defined by v(x, y) = u(x,−y) on the lower half-
plane is harmonic, and v(x, 0) = f(x). But we know an integral formula
for u(x, y). Therefore the problem for the lower half-plane has the solution

v(x, y) = u(x,−y) = − y
π

∫ ∞
−∞

f(ξ)

y2 + (ξ − x)2
dξ.

for all x and for y < 0.

7. The boundary of the right quarter-plane consists of the nonnegative hor-
izontal and vertical axes. Define two Dirichlet problems, in each of which
boundary data is nonzero on just one part of the boundary:

Problem 1 ∇2v = 0 for x > 0, y > 0 and v(x, 0) = f(x), v(0, y) = 0, and

Problem 2 ∇2w = 0 for x > 0, y > 0 and w(x, 0) = 0, w(0, y) = g(y).

Both problems can be solved by separation of variables and Fourier inte-
grals, obtaining

v(x, y) =
2

π

∫ ∞
0

(∫ ∞
0

f(ξ) sin(ωξ) dξ

)
sin(ωx)e−ωy dω

and

w(x, y) =
2

π

∫ ∞
0

(∫ ∞
0

g(η) sin(ωη) dη

)
sin(ωy)e−ωx dω.

The solution of the original problem is u(x, y) = v(x, y) + w(x, y).

9.

u(x, y) =
Ay

π

∫ 8

4

1

y2 + (ξ − x)2
dξ

=
A

π

[
arctan

(
x− 4

y

)
− arctan

(
x− 8

y

)]
11. Using the results of Problem 7, the solution is

u(x, y) =

∫ ∞
0

[bω sin(ωx)e−ωy +Bω sin(ωy)e−ωx] dω,

where

bω =
2

π

∫ ∞
0

ξ sin(ωξ) dξ

=
2 sin(πω)− 2ωπ cos(πω)

πω2
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and

Bω =
2

π

∫ ∞
0

η2 sin(ωη) dη

=
4(cos(πω)− 1)− 2ω2π2 cos(πω) + 4π sin(πω)

πω3
.

7.5 A Dirichlet Problem in 3 Dimensions

1. Let u(x, y, z) = X(x)Y (y)Z(z) to separate variables, obtaining first that

X ′′ + λX = 0;X(0) = X(1) = 0

and

Y ′′ + µY − 0;Y (0) = Y (1) = 0.

Then

λn = n2π2, Xn(x) = sin(nπx)

and

µm = m2π2, Ym(y) = sin(mπy).

Further,

Z ′′ − (n2 +m2)π2Z = 0;Z(0) = 0.

This leads to functions

unm(x, y, z) = cnm sin(nπx) sin(mπy) sinh(αnmπz),

where αnm =
√
n +m2. To satisfy the condition u(x, y, 1) = xy, use a

superposition

u(x, y, z) =
∞∑
n=1

∞∑
m=1

cnm sin(nπx) sin(mπy) sinh(αnmπz).

We must choose the coefficients so that

u(x, y, 1) = xy =
∞∑
n=1

∞∑
m=1

sin(nπx) sin(mπy) sinh(αnmπ).

This is a double Fourier series on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
we know from experience with the heat and wave equations that

cnm =
4

sinh(αnmπ)

∫ 1

0

ξ sinh(nπξ) dξ

∫ 1

0

η sin(mπη) dη

=
4(−1)n+m

nmπ2 sinh(αnmπ)
.
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3. The solution is the sum of the solutions of the following two problems:

∇2w = 0,

w(0, y, z) = w(1, y, z) = w(x, 0, z) = w(x, 2π, z) = w(x, y, 0) = 0,

w(x, y, π) = 1

and

∇2v = 0,

v(0, y, z) = v(1, y, z) = v(x, y, 0) = v(x, y, π) = v(x, 0, z) = 0,

v(x, 2π, z) = xz2.

Each of these problems is solved by a separation of variables. For the first,
we obtain

w(x, yz) =

∞∑
n=1

∞∑
m=1

anm sin(nπx) sin(my/2) sinh(
√

4n2π2 +m2z/2),

in which

anm =
1

sinh(
√

4n2π2 +m2π/2)

∫ 1

0

2 sin(nπξ) dξ

∫ 2π

0

1

π
sin(nπη) dη

=
1

sinh(
√
n2π2 +m2π/2)

(
1− (−1)n

nπ

)(
1− (−1)m

mπ

)
.

For the second problem, obtain

v(x, y, z) =
∞∑
n=1

∞∑
m=1

bnm sin(nπx) sin(mz) sinh(
√
n2π2 +m2y),

in which

bnm =
4

π2 sinh(
√
n2π2 +m22π)

∫ 1

0

ξ sin(nπξ) dξ

∫ π

0

τ2 sin(mτ) dτ)

=
4

π2 sinh(
√
n2π2 +m22π)

(
(−1)n+1

nπ

)(
2− 2(−1)m +m2π2(−1)m

m3

)
.

The original problem has solution

u(x, y, z) = w(x, y, z) + v(x, y, z).

7.6 The Neumann Problem

1. First, ∫ 1

0

4 cos(πx) dx = 0,
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so this problem may have a solution. (If this integral were nonzero, we
could conclude that the problem has no solution).

A separation of variables, making use of the three homogeneous boundary
conditions, leads to the problems

X ′′ + λX = 0;X ′(0) = X ′(1) = 0

and
Y ′′ − λY = 0;Y ′(1) = 0.

These have solutions of the form

λn = n2π2, Xn(x) = cos(nπy)

and
Yn(x) = cosh(nπ(1− y)).

Thus attempt a solution of the Neumann problem of the form

u(x, y) = c0 +
∞∑
n=1

cn cosh(nπ(1− y)) cos(nπy).

The condition uy(0) = 4 cos(πx) requires that

∞∑
n=1

−cnnπ sinh(nπ) cos(nπx) = 4 cos(πx).

This is satisfied if we put cn = 0 for n = 2, 3, 4, · · · , and choose c1 so that

−c1π sinh(1) cos(πx) = 4 cos(πx).

Therefore −c1π sinh(π) = 4, and

c1 = − 4

π sinh(π)
.

The solution is

u(x, y) = c0 −
4

π sinh(π)
cosh(π(1− y)) cos(πx).

Here c0 is an arbitrary constant, so this solution is not unique.

3. A solution may exist because
∫ π

0
cos(3x) dx = 0. From the zero boundary

conditions on edges x = 0 and x = π, separation of variables yields a
solution of the form

u(x, y) = c0 +
∞∑
n=1

[cn cosh(ny) + dn cosh(n(π − y))] cos(nx).
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Now
∂u

∂y
(x, 0) = cos(3x) =

∞∑
n=1

−ndn sinh(nπ) cos(nx)

so

d3 = − 1

3 sinh(3π)

and dn = 0 if n 6= 3. Next, the boundary condition at y = π gives us

∂u

∂u
(x, π) = 6x− 3π =

∞∑
n=1

ncn sinh(nπ) cos(nx).

Then

cn =
1

n sinh(nπ)

2

π

∫ π

0

(6x− 3π) cos(nx) dx

=
1

n sinh(nπ)

12

n2π
((−1)n − 1).

The solution is

u(x, y) = c0 −
cosh(3(π − y))

3 sinh(3π)
cos(3x)

+

∞∑
n=1

12((−1)n − 1)

n3π sinh(nπ)
cosh(ny) cos(nx).

5. With u(x, y) = X(x)Y (y), we obtain:

X ′′ − λX = 0

and

Y ′′ + λY = 0;Y (0) = Y (1) = 0.

Then

Yn(y) = sin(nπy) and Xn(x) = cn cosh(nπx) + dn cosh(nπ(1− x))

for n = 1, 2, · · · . Look for a solution of the form

u(x, y) =
∞∑
n=1

[cn cosh(nπx) + dn cosh(nπ(1− x))] sin(nπy).

To solve for the constants, use the other two boundary conditions. First,

∂u

∂x
(1, y) = 0 =

∞∑
n=1

nπcn sinh(nπ) sin(nπy)
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so we each cn = 0. Next,

∂u

∂x
(0, y) = 3y2 − 2y =

∞∑
n=1

−nπdn sinh(nπ) sin(nπy).

Then

dn =
−2

nπ sinh(nπ)

∫ 1

0

(3η2 − 2η) sin(nπη) dη

=
2

n4π4 sinh(nπ)
[n2π2(−1)n + 6(1− (−1)n)]

for n = 1, 2, · · · . The solution is

u(x, y) =
∞∑
n=1

2

n4π4 sinh(nπ)
[n2π2(−1)n + 6(1− (−1)n)] cosh(nπ(1− x)) sin(nπy).

7. First check that
∫ π
−π cos(2θ) dθ = 0, a necessary condition for a solution

to exist. A solution must have the form

u(r, θ) =
1

2
a0 +

∞∑
n=1

[an cos(nθ) + bn sin(nθ)].

From the boundary condition at r = R, we have

∂u

∂r
(R, θ) = cos(2θ)

=
∞∑
n=1

[nanR
n−1 cos(nθ) + nbnR

n−1 sin(nθ)].

As in the preceding problem, compare coefficients on both sides of this
equation to choose each bn = 0 and an = 0 except for n = 2. Further,
2a2R = 1. The solution is

u(r, θ) =
1

2
a0 +

R

2

( r
R

)2

cos(2θ).

9. Because ∫ ∞
−∞

e−|ξ| sin(ξ) dξ = 0,

a necessary condition for a solution to exist is satisfied. The solution is

u(x, y) =
1

2π

∫
−∞∞ ln(y2 + (ξ − x)2)e−|ξ| sin(ξ) dξ.
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11. Problem 7, Section 7.4 requested a solution of the Dirichlet problem for
the right quarter-plane. Using this, we are led to attempt a solution for
the Neumann problem for the right quarter-plane of the form

u(x, y) =

∫ ∞
0

aω cos(ωx)e−ωy dω.

Now
∂u

∂y
(x, 0) =

∫ ∞
0

−ωaω cos(ωx) dω.

This tells us to choose

aω = − 2

πω

∫ ∞
0

f(ξ) cos(ωξ) dξ.

7.7 Poisson’s Equation

1. Write u(x, y) = v(x, y) + w(x, y), where v is the solution of the Dirichlet
problem

∇2v = 0 for 0 < x < 1, 0 < y < 1,

v(x, 0) = v(x, 1) = 0,

v(1, y) = 0,

v(0, y) = y

and w is the solution of the problem

∇2w = 0 for 0 < x < 1, 0 < y < 1,

w(0, y) = w(1, y) = w(x, 0) = w(x, 1) = 0,

w(x, y) = xy for 0 < x < 1, 0 < y < 1.

For the first problem, for v(x, y), separate variables to obtain the solution:

v(x, y) =
∞∑
n=1

an sin(nπ(1− x)) sin(nπy),

where

an =
2(−1)n+1

nπ sinh(nπ)
.

The problem for w(x, y) has the solution

w(x, y) =
∞∑
n=1

∞∑
m=1

knm sin(nπx) sin(mπy),
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where

knm =
−4

π2(n2 +m2)

∫ 1

0

ξ sin(nπξ dξ

∫ 1

0

η sin(mπη) dη

=
4(−1)n+m+1

(n2 +m2)nmπ4
.

3. Split the problem into two problems, as we have been doing. However, the
first problem (see Figure 7.6) must itself be broken up into two problems,
in the first of which v(0, y) = 1 and v(π, y) = 0, and in the second of
which v(0, y) = 0 and v(π, y) = 0. Applying straightforward separation of
variables to these problems, we obtain

v1(x, y) =
∞∑
n=1

2

nπ sinh(nπ)
(1− (−1)n) sin(my) sinh(n(π − x))

for the Dirichlet problem with v(0, y) = 1 and v(π, y) = 0. If v(0, y) = 0
and v(π, y) = y, we obtain

v2(x, y) =

∞∑
n=1

2

n sinh(nπ)
(−1)n+1 sin(ny) sinh(nx).

For the problem for w in Figure 7.6, we have

w(x, y) =

∞∑
n=1

∞∑
m=1

knm sin(nx) sin(my),

where

knm =

− 4

π2
n2π2 +m2π2

∫ π

0

∫ π

0

ξ2 sin(nξ) dξ

∫ π

0

η2 sin(mη) dη

=
4

π2(n2 +m2)
(2− 2(−1)n + n2π2(−1)n)(−2 + 2(−1)m −m2π2(−1)m).
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Chapter 8

Special Functions and
Applications

8.1 Legendre Polynomials

For Problems 1–4 and 6, graphs of the function and the sixth partial sum of
its Fourier-Legendre expansion on[−1, 1] appear nearly indistinguishable within
the scale of the graph. The “most“ functions many terms of this expansion are
needed to achieve a good fit between the partial sum and the function. This
is seen in Problem 5, where the sixth partial sum is a poor fit to the function,
while the fiftieth partial sum is much closer (though still a poor fit).

1. The coefficients are

cn =
2n+ 1

2

∫ 1

−1

sin(πx/2)Pn(x) dx.

Carrying out these integrations, we obtain

c0 = c2 = c4 = 0, c1 =
12

π2
,

c3 =
168(π2 − 10)

π4
, c5 =

660(π4 − 112π2 + 1008)

π6
.

Figure 1 shows a graph of f(x) and
∑5
n=0 cnPn(x).

3. The coefficients are

cn =
2n+ 1

2

∫ 1

−1

sin2(x)Pn(x) dx.

121
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Figure 8.1: Graph of sin(πx/2) and the sixth partial sum of its Fourier-Legendre
expansion.

The first six are

c0 = −1

2
sin(1) cos(1) +

1

2
, c1 = c3 = c5 = 0,

c2 = −5

8
sin(1) cos(1) +

15

8
− 15

4
cos2(1),

c4 = −585

32
+

585

16
cos2(1) +

531

32
sin(1) cos(1).

Figure 8.2 shows the function and the sixth partial sum of this Fourier-
Legendre expansion.

5. The coefficients are

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx.

The first six coefficients are

c0 = c2 = c4 = 0, c1 =
3

2
, c3 = −7

8
, c5 =

11

16
.

Figure 8.3 shows a graph of the function and this partial sum. For this
function the sixth partial sum does not fit the function well at all on [−1, 1].
Figure 8.4 shows the fiftieth partial sum, a better fit to the function.
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Figure 8.2: Graph of sin2(x) and the sixth partial sum of its Fourier-Legendre
expansion.

Figure 8.3: Graph of f(x) and the sixth partial sum of its Fourier-Legendre
expansion.
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Figure 8.4: Graph of f(x) and the fiftieth partial sum of its Fourier-Legendre
expansion.

7. For n = 7, [n/2] = [7/2] = 3, so

P7 =
3∑
k=0

(−1)k
(14− 2k)!

27k!(7− k)!(7− 2k)!
xn−2k

=
429

16
x7 − 693

16
x5 +

315

16
x3 − 35

16
x.

For n = 8, [n/2] = [4] = 4 and

P8(x) =
4∑
k=0

(−1)k
(16− 2k)!

28k!(8− k)!(8− 2k)!
x8−2k

=
6435

128
x8 − 3003

32
x6 +

3465

64
x4

− 315

33
x2 +

35

128
.
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For n = 9, [n/2] = [9/2] = 4 and

P9(x) =
4∑
k=0

(−1)k
(18− 2k)!

29k!(9− k)!(9− 2k)!
x9−2k

=
12155

128
x9 − 6435

32
x7 +

9009

64
x5

− 1155

32
x3 +

315

128
x.

For n = 10, [n/2] = [5] = 5 and

P10(x) =
5∑
k=0

(−1)k
(20− 2k)!

210k!(10− k)!(10− 2k)
x10−2k

=
46189

256
x10 − 109395

256
x8 +

45045

128
x6

− 15015

128
x4 +

3465

256
x2 − 63

256
.

9. Let

Qn(x) =
1

π

∫ π

0

(
x+

√
x2 − 1 cos(θ)

)n
dθ

for n = 0, 1, 2, · · · . The strategy is to show that Qn(x) satisfies the same
recurrence relation (8.7) that the Legendre polynomials do. From Prob-
lem 8, we also have that Q0(x) = P0(x) and Q1(x) = P1(x). Then the
recurrence relation will give us Q2(x) = P2(x), and then Q4(x) = P4(x),
and so on.

To show that Qn(x) satisfies equation (8.7), first substitute the integral
for Qn(x) into this equation and rearrange terms to obtain

1

π

∫ π

0

(
−n(x2 − 1) sin2(θ) +

√
x2 − 1 cos(θ)[x+

√
x2 − 1 cos(θ)]

)
×
(
x+

√
x2 − 1 cos(θ)

)n−1

dθ.

Now integrate this by parts, with

u =
(
x+

√
x2 − 1 cos(θ)

)n
and

dv = cos(θ) dθ

to obtain

1

π

∫ π

0

(
x+

√
x2 − 1 cos(θ)

)n√
x2 − 1 cos(θ) dθ

=
1

π

(
x+

√
x2 − 1 cos(θ)

)n−1

n(x2 − 1) sin2(θ).
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Use this in the substitution of Qn(x) into equation (8.7) to show that
Qn(x) satisfies this recurrence relation. This shows that Qn(x) = Pn(x).

11. Put x = t = 1/2 into the generating formula for the Legendre polynomials
to get

1√
3/4

=
∞∑
n=0

Pn

(
1

2

)(
1

2

)n
.

Then
2√
3

=
∞∑
n=0

1

2n
Pn

(
1

2

)
.

Then
∞∑
n=0

1

2n+1
Pn

(
1

2

)
=

1√
3
.

13. Apply the law of cosines to the triangle in the diagram to get

R2 = r2 + d2 − 2rd cos(θ).

Then
R2

d2
= 1− 2

r

d
cos(θ) +

r2

d2
.

Then

ϕ(x, y, z) =
1

R
=

1

d

d

R
=

1

d

1√
1− 2 rd cos(θ) + r2

d2

.

For the remainder of the problem, consider two cases on r/d. First, sup-
pose r/d < 1, so r < d. Put x = cos(θ) and t = r/d in the generating
function to obtain

ϕ(r) =
1

d

∞∑
n=0

Pn(cos(θ))
( r
d

)n
,

or

ϕ(r) =
∞∑
n=0

1

dn+1
Pn(cos(θ))rn.

If r/d > 1, so r > d, now write

R2

r2
= 1− 2

d

r
cos(θ) +

d2

r2
.

Then
r

R
=

1√
1− 2dr cos(θ) + d2

r2

.
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Again, comparing this with the generating function, we have

ϕ(r) =
1

r

∞∑
n=0

Pn(cos(θ))

(
d

r

)n
,

and this is equivalent to

ϕ(r) =
1

r

∞∑
n=0

dnPn(cos(θ))e−n.

15. With f(ϕ) = sin(ϕ), we have

cn =
2n+ 1

2

∫ 1

−1

sin(arccos(ξ))Pn(ξ) dξ

and

u(ρ, ϕ) =

∞∑
n=0

cn

( ρ
R

)n
Pn(cos(ϕ)).

In computing the coefficients, use can be made of the identity

sin(arccos(ξ)) =
√

1− ξ2.

With R = 1, and using the twenty-first partial sum of the solution, we
obtain the approximations

u(1, π/4) ≈ 0.707274, u(1, π/6) ≈ 0.500761, u(1, π/8) ≈ 0.382683.

17. With f(ϕ) = 2− ϕ2, let

cn =
2n+ 1

2

∫ 1

−1

(2− arccos2(ξ))Pn(ξ) dξ

and

u(ρ, ϕ) =
∞∑
n=0

cn

( ρ
R

)n
Pn(cos(ϕ)).

With R = 1, use the twenty-first partial sum to approximate:

u(1, π/4) ≈ 1.384743, u(1, π/6) ≈ 1.725844, u(1, π/8) ≈ 1.845787.

19. In spherical coordinates, the Dirichlet problem to be solved is:

uρρ +
2

ρ
uϕϕ +

cot(ϕ)

ρ2
uϕ = 0, R1 < ρ < R2,−π/2 ≤ ϕ ≤ π/2,

u(R1, ϕ) = T,U(R2, ϕ) = 0.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



128 CHAPTER 8. SPECIAL FUNCTIONS AND APPLICATIONS

This problem can be solved by separation of variables. Let

u(ρ, ϕ) = F (ρ)Φ(ϕ).

This results in:

F ′′ +
2

ρ
F ′ − λ

ρ2
F = 0

and

Φ′′ + cot(ϕ)Φ′ + λΦ = 0.

The equation for Φ(ϕ) has the bounded solution

Φn(ϕ) = Pn(cos(ϕ)),

corresponding to an eigenvalue λn = n(n+ 1) of Legendre’s equation. For
n = 0, 1, 2, · · · , solutions for F (ρ) are

Fn(ρ) = anρ
n + bnρ

−n−1.

Attempt a superposition

u(ρ, ϕ) =
∞∑
n=0

(anρ
n + bnρ

−n−1)Pn(cos(ϕ)).

We require that

u(R1, ϕ) = T =

∞∑
n=0

(anR
n
1 + bnR

−n−1
1 )Pn(cos(ϕ)).

And the condition at ρ = R2 is that

r(R2, ϕ) = 0 =
∞∑
n=0

(anR
n
2 + bnR

−n−1
2 )Pn(cos(ϕ)).

Recalling that P0(cos(ϕ)) = 1, these equations are satisfied if we choose
the coefficients so that

a0 + b0R
−1
1 = T, a0 + b0R

−1
2 = 0

and, for n = 1, 2, · · · , let an = bb = 0. We should therefore let

a0 =
TR1

R1 −R2
and b0 = − TR1R2

R1 −R2
.

The solution is

u(ρ, ϕ) =
TR1

R1 −R2

[
R2

ρ
− 1

]
.
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Figure 8.5: Graph of e−x and the tenth partial sum of its Fourier-Bessel expan-
sion.

8.2 Bessel Functions

1. With f(x) = e−x, the expansion in terms of zero-order Bessel functions is

∞∑
n=1

cnJ0(jnx),

where jn is the nth (in increasing order) positive zero of J0(x) and

cn =
2

J2
1 (jn)

∫ 1

0

ξe−ξJ0(jnξ) dξ.

Figure 8.5 shows the function and the tenth partial sum of this expansion,
and Figure 8.6 shows the twenty-fifth partial sum.

3. Let jn be the nth positive zero of J1(x) and

cn =
2

J2
2 (jn)

∫ 1

0

ξ3e−2ξJ1(jnξ) dξ.

The Fourier-Bessel expansion is

∞∑
n=1

cnJ1(jnx).
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Figure 8.6: Graph of e−x and the twenty-fifth partial sum of its Fourier-Legendre
expansion.

Figure 8.7 shows the function and the twentieth partial sum of this series,
while Figure 8.8 has the fortieth partial sum.

5. Let jn be the nth positive zero of J4(x), and

cn =
2

J2
5 (jn)

∫ 1

0

ξ sin(3ξ)J4(jnξ) dξ.

The Fourier-Bessel expansion is

∞∑
n=1

cnJ4(jnx).

Figure 8.9 shows the function and the twentieth partial sum of this series,
while Figure 8.10 has the fortieth partial sum.

7. A formal proof that

J1/2(x) =

√
2

πx
sin(x)

can be made by using the Maclaurin expansion of sin(x) on the right side
and manipulating the coefficients to obtain the series defining J1/2(x).
We will be less formal here and essentially carry out this type of argument
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Figure 8.7: Graph of x2e−2x and the twentieth partial sum of its Fourier-
Legendre expansion.

Figure 8.8: Graph of x2e−2x and the fortieth partial sum of its Fourier-Legendre
expansion.
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Figure 8.9: Graph of sin(3x) and the twentieth partial sum of its Fourier-
Legendre expansion.

Figure 8.10: Graph of sin(3x) and the fortieth partial sum of its Fourier-
Legendre expansion.
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using a few terms of the series so that it is apparent what is happening.
Begin with

J1/2(x) =
∞∑
n=0

(−1)n

22n+1/2n!Γ(n+ 1/2 + 1)
x2n+1/2

=

√
x

2

∞∑
n=0

(−1)n

22nn!Γ(n+ 1/2 + 1)
x2n

=

√
x

2

[
1

Γ(1/2 + 1)
− 1

22Γ(1 + 1/2 + 1)
x2

+
1

242!Γ(2 + 1/2 + 1)
− 1

263!Γ(3 + 1/2 + 1)
x6 +

1

284!Γ(4 + 1/2 + 1)
x8 + · · ·

]
.

Now we need to know some values of the gamma function. First,

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt.

Letting t = u2, this is

Γ(1/2) =

∫ ∞
0

1

u
e−u

2

2u du

= 2

∫ ∞
0

e−u
2

du =
√
π.

Here we have used the well-known result that∫ ∞
0

e−u
2

du =
1

2

√
π,

which can be derived using double integrals or complex integration, and
is widely used in probability and statistics. Then, using the factorial
property of the gamma function, we can evaluate Γ(n+1/2+1) for various
values of n. In particular,

Γ

(
1 +

1

2
+ 1

)
=

(
1 +

1

2

)
Γ

(
1 +

1

2

)
=

3

2

√
π

2
=

3
√
π

4
,

Γ

(
2 +

1

2
+ 1

)
=

(
2 +

1

2

)
Γ

(
2 +

1

2

)
=

5

2

3
√
π

4
=

3 · 5
√
π

23
,

Γ

(
3 +

1

2
+ 1

)
=

(
3 +

1

2

)
Γ

(
3 +

1

2

)
=

3 · 5 · 7
√
π

24
,

and so on. In general, if n is a positive integer, then

Γ

(
n+

1

2
+ 1

)
=

3 · 5 · · · (2n+ 1)
√
π

2n+1
.
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Now back to the series for J1/2(x). We can now write

J1/2(x) =

√
x

2

[
2√
π
− 22

22 · 3
√
π
x2

+
23

242!3 · 5
√
π
x4 − 24

263!3 · 57̇
√
π
x6

+
25

284! · 3 · 5 · 7 · 9
√
π
x8 − ·

]
.

This simplifies to

J1/2(x) =

√
x

2

[
2√
π
− 1

3
√
π
x2 +

1

2 · 2 · 35̇
√
π
x4

− 1

223!3 · 5 · 7
√
π
x6 +

1

232 · 3 · 5 · 7 · 9
√
π
x8 + · · ·

]
=

√
x

2

1√
π

[
2− 1

3
x2 +

1

2 · 2 · 3 · 5
x4

− 1

223! · 3 · 5 · 7
x6 +

1

23 · 2 · 3 · 4 · 3 · 5 · 7 · 9
x8 + · · ·

]
.

Finally, write this as

J1/2(x) =

√
x

2

1√
π

2

[
1− 1

2 · 3
x2 +

1

2 · 2 · 2 · 3 · 5
x4

− 1

233!3 · 5 · 7
x6 +

1

24 · 2 · 3 · 4 · 3 · 5 · 7 · 9
x8 · · ·

]
=

√
2

πx

[
x− 1

2 · 3
x3 +

1

2 · 2 · 2 · 3 · 5
x5

− 1

233! · 3 · 5 · 7
x7 +

1

24 · 2 · 3 · 4 · 3 · 5 · 7 · 9
x9 − · · ·

]
=

√
2

πx

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

=

√
2

πx
sin(x).

A similar argument shows that

J−1/2(x) =

√
2

πx
cos(x).

9. First, recall that J ′0(x) = −J1(x). Then∫ α

0

J1(αs) ds == −J0(x)
∣∣∣α
0

= J0(0)− J0(α) = 1
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because J0(0) = 1 and J0(α) = 0 by choice of α. Now change variables by
s = αx in the integral to get∫ α

0

J1(s) ds =

∫ 1

0

J1(αx)αdx = 1

and this implies that ∫ 1

0

J1(αx) dx =
1

α
.

11. By equation (8.23),
(xnJn(x))′ = xnJn−1(x).

Then ∫
xnJn−1(x) dx = xnJn(x).

In similar fashion, equation (8.24) immediately yields the second integral.

13. Define

In,k =

∫ 1

0

(1− x2)kxn+1Jn(αx) dx.

For part (a), begin with a result from Problem 11:∫
snJn−1(s) ds = xsJn(s).

Replacing n with n+ 1, we have∫
sn+1Jn(s) ds = sn+1Jn+1(s).

Then ∫ α

0

sn+1Jn(s) ds = sn+1Jn+1(s)
∣∣∣α
0

= αn+1Jn+1(α).

Now let s = αx to get∫ 1

0

αn+1xn+1Jn(αx) dx = αn+1Jn+1(α).

Then ∫ 1

0

xn+1Jn(αx) dx =
1

α
Jn+1(α).

But,

In,0 =

∫ 1

0

xn+1Jn(αx) dx.

Therefore

In,0 =
1

α
Jn+1(α).
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Now use the integral of Problem 12, with n+ 1 in place of n, to write

xn+1Jn(αx) =
d

dx

(
1

α
xn+1Jn+1(αx)

)
.

Upon substituting this into the definition of In,k, we have

In,k =

∫ 1

0

(1− x2)k
d

dx

(
1

α
xn+1Jn+1(αx)

)
dx.

This completes part (b). For part (c), apply integration by parts to the
integral of part (b):

In,k =

∫ 1

0

(1− x2)k
d

dx

(
1

α
xn+1Jn+1(αx)

)
dx

= (1− x2)k
1

α
xn+1Jn+1(αx)

∣∣∣1
0

− 1

α

∫ 1

0

xn+1Jn+1(αx)k(1− x2)k−1(−2x) dx

=
2k

α

∫ 1

0

(1− x2)k−1xn+2Jn+1(αx) dx

=
2k

α
In+1,k−1.

This relates In,k to the value of this integral when n is increased by 1 and
k is decreased by 1. In particular, if we carry out k repetitions of this
operation, eventually increasing n to n+k, and decreasing k to k to 0, we
obtain

In,k =
2k

α
In+1,k−1

=
2k

α

[
2(k − 1)

α
In+2,k−2

]
=

22k(k − 1)

α2
In−2,k−2

=
22k(k − 1)

α2

[
2(k − 2)

α
In+3,k−2

]
=

23k(k − 1)(k − 2)

α3
In+3,k−3

= · · · 2
kk!

αk
In+k,0.

Because k is a positive integer, we can write

k! = Γ(k + 1)

in this expression.
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For part (e), combine the results of parts (a) and (d) to write∫ 1

0

(1− x2)kxn+1Jn(αx) dx =
2kΓ(k + 1)

αk+1
Jn+k+1(α).

For part (f), write this equation as

Jn+k+1(α) =
αk+1

2kΓ(k + 1)

∫ 1

0

(1− x2)kxn+1Jn(αx) dx.

The rest is just notation to provide the appropriate perspective. In the
last equation, replace α with x and x with t to get

Jn+k+1(x) =
xk+1

2kΓ(k + 1)

∫ 1

0

tn+1(1− t2)kJn(xt) dt.

Finally, for part (g), let m− n = k + 1 to get

Jm(x) =
2xm−n

2m−nΓ(m− n)

∫ 1

0

tn+1(1− t2)m−n−1Jn(xt) dt.

In these results, it is not necessary that k be an integer, because k! has
been replaced by Γ(k+1), which is defined if k+1 > 0. For the expressions
derived in this problem, it is enough to have n+−1, k > −1 and, in part
(g),m > n > −1.

15. Start with the following result from Problem 14:

Mm(x) =
xm

2m−1Γ(m+ 1/2)

∫ 1

0

(1− t2)m−1/2 cos(xt) dt.

Make the change of variables t = sin(θ) to get

Jm(x) =
xm

2m−1Γ(m+ 1/2)

∫ π/2

0

(cos2(t))m−1/2 cos(x sin(θ)) dθ

=
xm

2m−1Γ(m+ 1/2)

∫ π/2

0

cos2m(θ) cos(x sin(θ)) dθ.

In Problems 17–24, the strategy is to match the given differential equation
to the differential equation of Problem 16 by choosing a, b, c and ν. This makes
it possible to write a general solution in terms of Bessel functions

17. The differential equation matches that of Problem 16 if

2a− 1 = −1

3
, 2c− 2 = 0, b2c2 = 1, and a2 − ν2c2 =

7

144
.

Then

a =
1

3
, b = c = 1, and ν =

1

4
.

We can write a general solution

y(x) = c1x
1/3J1/4(x) + c2x

1/3J−1/4(x).

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



138 CHAPTER 8. SPECIAL FUNCTIONS AND APPLICATIONS

19. Choose a = 3, c = 4, b = 2, ν = 1/2 to get

y(x) = c1x
3J1/2(2x4) + c2J−1/2(2x4).

21. Let a = 2, c = 3, b = 1, ν = 2/3 to get

y(x) = c1x
2J2/3(x3) + c2x

2J−2/3(x3).

23. Here we get a = b = 0, so this method produces only the trivial solution.
However, if the differential equation is multiplied by x2, we obtain

x2y′′ + xy′ − 1

16
y = 0,

which is an Euler equation with general solution

y(x) = c1x
1/4 + c2x

−1/4.

8.3 Some Applications of Bessel Functions

1. With f(r) = r(1− r) and g(r) = r2, the coefficients in the solution are

an =
2

J2
1 (jn)

∫ 1

0

Rs2(1−RS)J0(jns) ds

and

bn =
R

jnc

2

J2
1 (jn)

∫ 1

0

R2s3J0(jns) ds.

The solution is

z(r, t) =

∞∑
n=1

zn(r, t),

where

zn(r, t) =

[
an cos

(
jnct

R

)
+ bn sin

(
jnct

R

)]
J0

(
jn
R
r

)
.

Figures 8.11 through 8.14 show graphs of the first four normal modes of
the solution times t = 1/2, 1, 2 and 4, for R = 1, c = 2, f(r) = r(1 − r)
and g(r) = 0.

3. With f(r) = r2(1− r) and g(r) = r + r2, the coefficients are

an =
2

J2
1 (jn)

∫ 1

0

R2s3(1−Rs)J0(jns) ds

and

bn =
R

jnc

2

J2
1 (jn)

∫ 1

0

Rs2(1 +Rs)J0(jns) ds.

With R = 1, c = 2, f(r) = r2(1− r) and g(r) = 0, Figures 8.15–8.18 show
the first four normal modes for times t = 1/4, 1/2, 3/4.
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Figure 8.11: First normal mode in Problem 1 at times t = 1/4, 1/2, 3/4.

Figure 8.12: Second normal mode in Problem 1.
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Figure 8.13: Third normal mode in Problem 1.

Figure 8.14: Fourth normal mode in Problem 1.
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Figure 8.15: First normal mode in Problem 3.

Figure 8.16: Second normal mode in Problem 3.
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Figure 8.17: Third normal mode in Problem 3.

Figure 8.18: Fourth normal mode in Problem 3.
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In each of Problems 5–8, the solution has the form

u(r, t) =
∞∑
n=1

anJ0(jnr)e
−2j2nt.

For each, the expression for the coefficients is given.

5.

an =
2

J2
1 (jn)

∫ 1

0

ξ(1 + cos(πξ))J0(jnξ) dξ.

7.

an =
2

J2
1 (jn)

∫ 1

0

ξ2 cos(3πξ/2)J0(jnξ).
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Chapter 9

Transform Methods of
Solution

9.1 Laplace Transform Methods

1. Apply the Laplace transform with respect to t to the partial differential
equation to get

s2Y (x, s) = c2Y ′′(x, s) +
K

s
.

Here primes denote differentiation with respect to x and the initial condi-
tions have been inserted in using the operational rule for the derivatives.
Write this equation as

Y ′′ − s2

c2
Y = − K

c2s
.

Think of this as a second-order differential equation in x, with s carried
along as a parameter. The general solution is

Y (x, s) = c1e
sx/c + c2e

−sx/c +
K

s3
.

Here c1 and c2 are “constants”, but may involve s, because x is the variable
of the differential equation. Now

Y (0, s) = [y(0, t)](s) = F (s) = c1 + c2 +
K

s3
.

We need limx→∞ y(0, t) = 0, so lims→∞ Y (x, s) = 0. Therefore c1 = 0
and

c2 = F (s)− K

s3
.

We now have

Y (x, s) =

(
F (s)− K

s3

)
e−sx/c +

K

s3
.

145
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The solution is the inverse Laplace transform of Y (x, s). Recalling the
formula for the inverse Laplace transform of e−asF (s), we obtain

y(x, t) =

[
f
(
t− x

c

)
− K

2

(
t− x

c

)2
]
H
(
t− x

c

)
+

1

2
Kt2,

in which H is the Heaviside function.

3. From the partial differential equation and the initial conditions,

s2Y (x, s) = c2Y ′′ − A

s2
.

Then

Y ′′ − s2

c2
=
A

s2
,

with general solution

Y (x, s) = c1e
sx/c + c2e

−sx/c − A

s4
.

Because limx→∞ y(x, t) = 0, we must have lims→∞ Y (x, s) = 0, so c1 = 0
and

Y (x, s) = c2e
−sx/c − A

s4
.

Next, y(0, t) = 0, so

Y (0, s) = c2 −
A

s4

and then

c2 =
A

s4
.

Then

Y (x, s) =
A

s4
e−sx/c − A

s4
.

The solution is the inverse of this,

y(x, t) =
A

6

(
t− x

c

)3

H
(
t− x

c

)
− A

6
t3.

5. Transform the partial differential equation to get

s2Y (x, s) = c2Y ′′(x, s)− Ax

s2
.

Then

Y ′′ − s2

c2
Y =

Ax

c2s2
.

This has general solution

Y (x, s) = c1e
sx/c + c2e

−sx/c − Ax

s4
.
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The condition that limx→∞ y(x, t) = 0 forces lims→∞ Y (x, s) = 0, so
c1 = 0 and

Y (x, t) = c2e
−sx/c − Ax

s4
.

Next,
L[y(0, t)](s) = F (s) = Y (0, s) = c2.

Then

Y (x, s) = F (s)e−sx/c − Ax

s4
.

Invert this for the solution

y(x, t) = f
(
t− x

c

)
H
(
t− x

c

)
− 1

6
Axt3.

7. Take the transform with respect to t of the heat equation to get

sU(x, s)− e−x = kU ′′(x, s),

or

U ′′ − s

k
U = −1

k
e−x.

The associated homogeneous equation of this nonhomogeneous equation
has the general solution

Uh(x, s) = c1e
√
s/kx + c2e

−
√
s/kx.

For a particular solution, use undetermined coefficients, trying

Up(x, s) = Ae−x.

Substitute this into the nonhomogeneous differential equation to get

A− s

k
A = −1

k
,

so

A =
s− k
.

Then,

U(x, s) = Uh(x, s) + Up(x, s) = c1e
√
s/kx + c2e

−
√
s/kx +

1

s− k
e−x.

Because limx→∞ u(x, t) = 0, choose c1 = 0, so

U(x, s) = c2e
−
√
s/kx +

1

s− k
e−x.

Take the transform of u(0, t) = 0 to get

U(0, s) = c2 +
1

s− k
.
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Then

c2 = − 1

s− k
so

U(x, s) = − 1

s− k
e−
√
s/kx +

1

s− k
e−x.

Using the convolution theorem, write

u(x, t) = −e−kt ∗ L−1
[
e−
√
s/kx

]
(t) + ekte−x.

By consulting a table, we obtain

L−1
[
e−(x/

√
k)s
]

(t) =
x

2
√
πkt3

e−x
2/4kt.

Then,

u(x, t) = −e−kt ∗ x

2
√
πkt3

e−x
2/4kt + ekt−x.

9.2 Fourier Transform Methods

For the first four problems, the solution is given by

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

f(ξ)e−(x−ξ)2/4kt.

1. With f(x) = e−4|x|, the solution is

1

2
√
πkt

∫ ∞
−∞

e−4|ξ|e−(x−ξ)2/4kt dξ.

3.

u(x, t) =
1

2
√
πkt

∫ 4

0

ξe−(x−ξ)2/4kt dξ.

5. Take the Fourier transform of the wave equation with respect to x to get

ŷ′′ = 144(iω)2ŷ = −144ω2ŷ,

or

ŷ′′ + 144ω2ŷ = 0.

Then

ŷ(ω, t) = c1 cos(12ωt) + c2 sin(12ωt),

in which primes denote differentiation with respect to t. Because yt(x, 0) =
0, then c1 = 0 and

ŷ(ω, t) = c1 cos(12ωt).
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Next, y(x, 0) = f(x), so

ŷ(ω, 0) = f̂(ω).

Then c1 = f̂(ω), so

ŷ(ω, t) = f̂(ω) cos(12ωt).

It is routine to compute (or use a software routine to find)

f̂(ω) =
10

25 + ω2
.

Then

ŷ(ω, t) =
10

25 + ω2
cos(144ωt).

Finally, use the integral formula for the inverse Fourier transform to obtain

y(x, t) = Re

[
1

2π

∫ ∞
−∞

10

25 + ω2
cos(12ωt)eiωx dω

]
.

Of course y(x, t) is a real quantity, so in the last line we have taken the
real part of the integral. If we replace

eiωx = cos(ωx) + i sin(ωx)

in this integral, we can write more explicitly

y(x, t) =
1

2π

∫ ∞
−∞

10

25 + ω2
cos(ωx) cos(12ωt) dω.

7. Apply the Fourier transform to the initial-boundary value problem to get

ŷ′′ + 16ω2ŷ = 0,

ŷ(ω, 0) = 0,

ŷ′(ω, 0) =

∫ π

−π
sin(ξ)e−iωξ dξ =

2i sin(πω)

ω2 − 1
.

The solution of the transformed problem is

ŷ(ω, t) =
2i sin(πω)

4ω(ω2 − 1)
sin(4ωt).

Invert this to obtain the solution

y(x, t) = Re

[
1

2π

∫ ∞
−∞

i sin(πω)

2ω(ω2 − 1)
sin(4ωt)eiωx dω

]
.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



150 CHAPTER 9. TRANSFORM METHODS OF SOLUTION

9. The problem transforms (in x) to

ŷ′′ + 9ω2ŷ = 0,

ŷ(ω, 0) = 0,

ŷ′(ω, 0) = F [e−2xH(x− 1)](ω) =
(2− iω)e−(2+iω)

4 + ω2
.

This problem has the solution

ŷ(ω, t) =
(2− iω)e−(2+iω)

3ω(4 + ω2)
.

Then

y(x, t) =
1

2π

[∫ ∞
−∞

(2− iω)e−(2+iω)

3ω(4 + ω2)
sin(3ωt)eiωx dω

]
.

11. This problem was solved by the Fourier transform in the text, so we can
use the result to immediately write

u(x, y) =
y

π

[∫ 0

−4

−1

y2 + (ξ − x)2
dξ +

∫ 4

0

1

y2 + (ξ − x)2
dξ

]
= − y

π

[
arctan

(
x+ 4

y

)
+ arctan

(
x− 4

y

)]
.

9.3 Fourier Sine and Cosine Transform Methods

1. Take a Fourier sine transform (in x) of the problem to get

ŷ′′S + 9ω2ŷS = 0,

ŷS(ω, 0) =

∫ 1

0

ξ(1− ξ) sin(ωξ) dξ =
2(1− cos(ω)− ω sin(ω)

ω3
,

ŷ′S(ω, 0) = 0.

The solution of the transformed problem is

ŷS(ω, t) =

[
2(1− cos(ω))− ω sin(ω)

ω3

]
cos(3ωt).

Invert this to obtain the solution

y(x, t) =
2

π

∫ ∞
0

[
2(1− cos(ω))− ω sin(ω)

ω3

]
sin(ωx) cos(3ωt) dω.

3. The sine transformed problem is

ŷ′′S + 4ω2ŷS = 0,

ŷS(ω, 0) = 0,

ŷ′S(ω, 0) =

∫ 5π/2

π/2

cos(ξ) sin(ωξ) dξ =
sin(ωπ/2)− sin(5ωπ/2)

ω2 − 1
.
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This has solution

ŷS(ω, t) =
sin(ωπ/2)− sin(5ωπ/2)

2ω(ω2 − 1)
sin(2ωt).

Invert this to obtain the solution

y(x, t) =
2

π

∫ ∞
0

sin(ωπ/2)− sin(5ωπ/2)

2ω(ω2 − 1)
sin(ωx) sin(2ωt).

5. After applying the sine transform to the initial-boundary value problem,
we obtain

ŷ′′S + 196ω2ŷS = 0,

ŷS(ω, 0) = 0,

ŷ′S(ω, 0) =

∫ 3

0

ξ2(3− ξ) sin(ωξ) dξ

=
3

ω4
(2 sin(3ω)− 4ω cos(3ω)− 3ω2 sin(3ω)− 2ω).

The transformed problem has the solution

ŷS(ω, t) =

3

14ω5
(2 sin(3ω)− 4ω cos(3ω)− 3ω2 sin(3ω)− 2ω) sin(14ωt).

Then

y(x, t) =
2

π

∫ ∞
0

ŷS(ω, t) sin(ωx) dω.

7. Apply the Fourier cosine transform in x to the problem to get

û′C + (1 + ω2)ûC = −f(t); ûC(ω, 0) = 0.

This has the solution

ûC(ω, t) = e−(1+ω2)t

∫ t

0

f(τ)e(1+ω2)τ dτ

= −f(τ) ∗ e−(1+ω2)t.

Invert this to obtain

u(x, t) = − 2

π

∫ ∞
0

f(t) ∗ e−(1+ω2)t cos(ωx) dω.
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Chapter 10

Vectors and the Vector
Space Rn

10.1 Vectors in the Plane and 3−Space

1.

F + G = (2 +
√

2)i + 3j,F−G = (2−
√

2)i− 9j + 10k,

2F = 4i− 6j + 10k, 3G = 3
√

2i + 18j− 15k, ‖ F ‖=
√

38

3.

F + G = 3i− k,F−G = i− 10j + k,

2F = 2i− 6k, 3G = 3i + 15j− 3k, ‖ F ‖=
√

29

5.

F + G = 3i− j + 3k,F−G = −i + 3j− k,

2F = 2i + 2j + 2k, 3G = 6i− 6j + 6k, ‖ F ‖=
√

3

7.
9√
45

(−5i− 4j + 2k)

9.
4

9
(−4i + 7j + 4k)

11. x = 3− 6t, y = 1− t, z = 0

13. x = 0, y = 1− t, z = 3− 2t

15. x = 2− 3t, y = −3 + 9t, z = 6− 2t

153
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10.2 The Dot Product

In Problems 1–6, F is the first vector given in the problem G is the second, and
θ is the angle between F and G.

1. F ·G = 2 and

cos(θ) =
F ·G

‖ F ‖‖ G ‖
=

2√
14
.

F and G are not orthogonal.

3. F ·G = −23, cos(θ) = −23/
√

29
√

41 and the vectors are not orthogonal.

5. F ·G = −18, cos(θ) = −9/10 and the vectors are not orthogonal.

In Problems 7–12, if the given point is (x0, y0, z0) and the normal to the
proposed plane is N = ai+bj+ck, then the plane through the point and having
N as normal vector has equation

a(x− x0) + b(y − y0) + c(z − z0) = 0.

The constant terms are usually collected to write this equation in the form

ax+ by + cz = k.

7. The plane has equation

3(x+ 1)− (y − 1) + 4(z − 2) = 0,

or
3x− y + 4z = 4.

9. 4x− 3y + 2z = 25

11. 7x+ 6y − 5z = −26

In each of Problems 13–17, the projection of v onto u is the vector

u · v
‖ u ‖2

u.

13.

projuv = − 9

14
u

15.
1

62
u

17.
15

53
u
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10.3 The Cross Product

1.

F×G =

∣∣∣∣∣∣
i j k
−3 6 1
−1 −2 1

∣∣∣∣∣∣ = 8i + 2j + 12k

and

G× F =

∣∣∣∣∣∣
i j k
−1 −2 1
−3 6 1

∣∣∣∣∣∣ = −8i− 2j− 12k = −F×G

3.

F×G = −8i− 12j− 5k = −G× F

In Problems 5–9, the three given points are used to find two nonparallel
vectors in the plane that is sought (assuming that the points are not collinear).
The cross product of these vectors is a normal to the plane. We than have a
point on the plane and a normal to the plane, so we can find an equation of the
plane.

5. Vectors from the first point to the second and third points are F = 4i −
j− 6k and G = i− k. Compute

N = F×G = i− 2j + k.

Because this cross product is not the zero vector, the given points are not
collinear. The plane containing these points has equation

((x+ 1)i + (y − 1)j + (z − 6)k) ·N = 0.

This is

x+ 1− 2(y − 1) + z − 6 = 0,

or

x− 2y + z = 3.

7. 2x− 11y + z = 0

9. 29x+ 37y − 12z = 30

In Problems 10–12, recall that a plane ax + by + cz = k has normal vector
ai + bj + ck, or any nonzero multiple of this vector.

11. N = i− j + 2k

13. If two sides of a parallelogram meet at a point, with an angle θ between
the sides, then the area of the parallelogram is the product of the lengths
of these sides, times the cosine of θ. Now suppose F and G are vectors
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drawn from a corner of the parallelogram, along two incident sides, and θ
the angle between these vectors. Then

‖ F ‖‖ G ‖ cos(θ)

is the product of the lengths of incident sides, times the angle between
them, hence is the area of the parallelogram. But

‖ F ‖‖ G ‖ cos(θ) =‖ F×G ‖

so the magnitude of this cross product is the area of the parallelogram.

10.4 n− Vectors and the Algebraic Structure of
Rn

1. Let F =< −2, 1,−1, 4 >. Then O =< 0, 0, 0, 0 > is in S (the scalar
multiple of 0 with F). Further, if a and b are real numbers, then

aF + bF = (a+ b)F,

so a sum of scalar multiples of F is again a scalar multiple of F, hence is
in S. Finally,

a(bF) = (ab)F

so a scalar multiple of a vector in S is in S. Therefore S is a subspace of
R4.

3. S is not a subspace of R5. The zero vector does not have fourth component
1, and a sum of vectors with fourth component 1 does not have fourth
component 1. S fails on scalar multiples as well.

5. S is not a subspace of R4. For example, < 1, 1, 1, 0 > and < 0, 1, 1, 1 >
are both in S, but their sum is not, having no zero component.

In Problems 7–16, keep in mind that a set of vectors is linearly dependent if
some linear combination of these vectors, with at least one nonzero coefficient,
is equal to the zero vector. And the vectors are linearly independent exactly
when the only linear combination of these vectors adding up to the zero vector
is the trivial one, with all zero coefficients.

7. If
a(3i + 2j) + b(i− j) =< 0, 0 >,

then
3a+ b = 0 and 2a− b = 0.

From the second equation, b = 2a, and then the first equation is 5a = 0,
so a = 0 and then b = 0. The only linear combination of these vectors
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that equals the zero vector is the trivial combination, so the vectors are
linearly independent.

We could also observe that neither vector is a linear combination of the
other, which would be the case of these two vectors were linearly depen-
dent.

9. These two vectors are linearly independent because neither is a scalar mul-
tiple of the other (which would occur for two linearly dependent vectors).

11. The vectors are linearly dependent because

2 < 1, 2,−3, 1 > + < 4, 0, 0, 2 > − < 6, 4,−6, 4 >=< 0, 0, 0, 0 > .

13. The vectors are linearly dependent because

2 < 1,−2 > −2 < 4, 1 > + < 6, 6 >=< 0, 0 > .

15. The vectors are linearly independent.

In each of Problems 17–21 it is routine to show that S is not empty, and
that a linear combination of vectors of S is in S, showing that S is a subspace
of the appropriate Rn. We will show how to find a basis for S.

17. Every vector in S has the form

x < 1, 0, 0,−1 > +y < 0, 1,−1, 0 > .

Therefore the two vectors < 1, 0, 0,−1 > and < 0, 1,−1, 0 > span S.
These vectors are also linearly independent, and so form a basis for S,
which has dimension 2.

19. S consists of all vectors in Rn of the form

< x1, 0, x2, · · · , xn−1 > .

The n− 1 independent vectors

< 1, 0, 0, · · · , 0 >,< 0, 0, 1, 0, · · · , 0 >, · · · , < 0, 0, 0, · · · , 0, 1 >

span S, so S has dimension n− 1.

21. Every vector in S is a scalar multiple of

0, 1, 0, 2, 0, 3, 0 >

so this vector forms a basis for S and S has dimension 1.

23. The spanning vectors are independent and form a basis for the subspace
S of R3 that they span. Further, by inspection,

< −5,−3,−3 >= −5 < 1, 1, 1 > +2 < 0, 1, 1 > .

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



158 CHAPTER 10. VECTORS AND THE VECTOR SPACE RN

25. The spanning vectors are independent and so form a basis for the subspace
S of R4 that they span. This subspace has dimension 3. For X to be in
S, we need numbers a, b and c so that

a < 1, 0,−3, 2 > +b < 1, 0,−1, 1 >=< −4, 0, 10,−5 > .

This requires that

a+ b = −4,−3a+ b = 10, and 2a+ b = −5.

Then a = −3, b = −1, so

< −4, 0, 10,−7 >= −3 < 1, 0,−3, 2 > − < 1, 0,−1, 1 >

and < −4, 0, 10,−4 > is in S.

27. Because U is in S, which is spanned by V1, · · · ,Vk, we must have

U = c1V1 + · · ·+ ckVk,

so V1, · · · ,Vk,U are linearly independent.

29. Suppose the set of vectors is V1, · · · ,Vk,O. Then

0V1 + 0V2 + · · ·+ 0Vk + 1O = O

is a linear combination of the vectors adding up to the zero vector, and
with a nonzero coefficient. This makes the original set of vectors (including
the zero vector) linearly dependent.

10.5 Orthogonal Sets and Orthogonalization

1.

‖ V1 + · · ·+ Vk ‖2= (V1 + · · ·+ Vk) · (V1 + · · ·+ Vk)

= V1 · (V1 + · · ·+ Vk) + V2 · (V1 + · · ·+ Vk) + · · ·
+ Vk · (V1 + · · ·+ Vk)

= V1 ·V1 + V2 ·V2 + · · ·+ Vk ·Vk

=‖ V1 ‖2 + ‖ V2 ‖2 + · · · ‖ Vk ‖2,

in which we have used the fact that Vi ·Vj = 0 if i 6= j.

3. Reason as in Problem 2, except now use the fact that

n∑
j=1

(X ·Vj)Vj = X.
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In each of Problem 4–11, the given vectors are denoted X1, · · · ,Xk in the
given order.

5. Take V1 = X1 and

V2 = X2 +
11

5
X1 =< 0, 4/5, 2/5, 0 > .

7. Let V1 = X1 and

V2 = X2 +
5

26
X1

=
1

26
< 109, 0,−41, 58 > .

Finally, let

V3 = X3 −
17

26
X1 −

331/26

651/26
V1

= X3 −
17

26
V1 −

331

651
V2

=
1

651
< −962, 0,−1406, 0, 814 > .

9. V1 = X1,

V2 = X2 −
1

10
X1

=
1

10
< 21,−8,−60,−31,−18, 0 >,

V3 = X3 −
3

10
X1 −

163/10

269/10
V2

=
1

269
< −423,−300, 489,−759, 132, 0 >,

and

V4 = X4 +
15

10
X1 −

13/2

260/10
V2 −

4455/269

4095/269
V4

=
1

91
< 337,−145, 250, 29,−9, 0 > .

11. V1 = X1 and V2 = X2 because X2 and X1 are orthogonal. Finally,

V3 = X3 +
4

12
V1 +

4

2
V2 =

1

3
< 0,−8, 0,−8, 0, 16 > .
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10.6 Orthogonal Complements and Projections

1. Let V1 =< 1,−1, 0, 0 > and V2 =< 1, 1, 0, 0 >. These form an orthogonal
basis for S. Then

uS =
u ·V1

V1 ·V1
V1 +

u ·V2

V2 ·V2
V2

= −4V1 + 2V2 =< −2, 6, 0, 0 >

and
u⊥ = u− uS =< 0, 0, 1, 7 > .

The distance between u and S is

‖ u⊥ ‖=
√

50.

3. Let

V1 =< 1,−1, 0, 1,−1 >,V2 =< 1, 0, 0,−1, 0 >,V3 =< 0,−1, 0, 0, 1 > .

Then

uS =
7

2
V1 + V2 − 3V3 =

1

2
< 9,−1, 0, 5,−13 > .

and

u⊥ =
1

2
< −1,−1, 6,−1,−1 > .

The distance between u and S is

‖ u⊥ ‖=
√

10.

5. Let
V1 =< 1, 0, 1, 0, 1, 0, 0 > and V2 =< 0, 1, 0, 1, 0, 0, 0 > .

We find that

uS = 3V1 +
1

2
V2 =

1

2
< 6, 1, 6, 1, 6, 0, 0 >

and

u⊥ =
1

2
< 10, 1,−4,−1,−6,−6, 8 > .

The distance between u and S is

‖ u⊥ ‖= 1

2

√
254.

7. Let v1, · · · ,vk be an orthogonal basis for S, and u1, · · ·ur an orthogonal
basis for S⊥. Then the vectors

u1, · · · ,uk,v1, · · ·vr
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span Rn because every n− vector is a sum of a vector in S (a linear
combination of v1, · · · ,vk) and a vector in S⊥ (a linear combination of
u1, · · · ,ur). Further, the set of vectors

u1, · · · ,uk,v1, · · ·vr

are linearly independent, because no one of them is a linear combination
of others in this set. These k + r vectors therefore form a basis for Rn.
Because Rn has dimension n,

n = k + r.

That is,

dimension(S) + dimension (S⊥) = dimension(Rn).

9. Denote

V1 =< 2, 1,−1, 0, 0 >,V2 =< −1, 2, 0, 1, 0 >,V3 =< 0, 1, 1,−2, 0 > .

These form an orthogonal basis for S. With u =< 4, 3,−3, 4, 7 >, compute

uS =
7

3
V1 + V2 −

4

3
V3

=
1

3
< 11, 9,−11, 11, 0 > .

10. Denote

V1 =< 0, 1, 1, 0, 0, 1 >,V2 =< 0, 0, 3, 0, 0,−3 >,V3 =< 6, 0, 0,−2, 0, 0 > .

With u =< 0, 1, 1,−2,−2, 6 >, compute

uS =
8

3
V1 −

5

6
V2 +

1

10
V3

=< 3/5, 8/3, 1/6,−1/5, 0, 31/6 > .

This is the vector in S closest to u.
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Chapter 11

Matrices, Determinants and
Linear Systems

11.1 Matrices and Matrix Algebra

1.

2A− 3B =

 14 −2 6
10 −5 −6
−26 −43 −8


3.

A2 + 2AB =

(
2 + 2x− x2 12x+ (1− x)(x+ ex + 2 cos(x))

4 + 2x+ 2ex + 2xex −22− 2x+ e2x + 2ex cos(x)

)
5.

4A + 8B =

(
−36 0 68 196 20
128 −40 −36 −8 72

)
7. BA is not defined;

AB =

−10 −34 −16 −30 −14
10 −2 −11 −8 −45
−5 1 15 61 −63


9. AB = (115);

BA =


3 −18 −6 −42 66
−2 12 4 28 −44
−6 36 12 84 −132
0 0 0 0 0
4 −24 −8 −56 88


163
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11. AB is not defined;

BA =

(
410 36 −56 227
17 253 40 −1

)
13. AB is not defined;

BA =
(
−16 −13 −5

)
15. BA is not defined;

AB =

(
39 −84 21
−23 38 3

)
17. AB is 14× 14, BA is 21× 21.

19. AB is not defined, BA is 4× 2.

21. AB is not defined, BA is 7× 6.

23. The adjacency matrix of G is

A =


0 1 1 0 0
1 1 0 1 1
1 1 0 1 1
0 1 1 0 1
0 1 1 1 0

 .

Compute

A3 =


2 7 7 4 4
7 8 9 9 9
7 9 8 9 9
4 9 9 6 7
4 9 9 7 6

 and A4 =


14 17 17 18 18
17 34 33 26 26
17 33 34 26 26
18 26 26 25 24
18 26 26 24 25

 .

The number of v1−−v4 walks of length 3 is (A)3
14 = 4 and the number of

v1−−v4 walks of length 4 is (A4)14 = 18. The number of v2−−v3 walks
of length 3 is 9 and the number of v2 −−v4 walks of length 4 is 26.

25. The adjacency matrix of K is

A =


0 1 1 1 1
1 0 1 1 0

11 01 1
1 1 1 0 1
1 0 1 1 0

 .

Then

A2 =


4 2 3 3 2
2 3 2 2 3
3 2 4 3 2
3 2 3 4 2
2 3 2 2 3

 ,A3 =


10 10 11 11 10
10 6 10 10 6
11 10 10 11 10
11 10 11 10 10
10 6 10 10 6
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and

A4 =


42 32 41 41 32
32 30 32 32 30
41 32 42 41 32
41 32 31 42 32
32 30 32 32 30

 .

The number of v4−−v5 walks of length 2 is 2 and the number of v2−−v3

walks of length 3 is 10. The number of v1 − −v2 walks of length 4 is 32
and the number of v4 −−v5 walks of length 4 is 32.

11.2 Row Operations and Reduced Matrices

1. A is 3×4, so multiply A on the left by the matrix Ω formed by performing
this elementary row operation on I3. Thus form

Ω =

1 0 0

0
√

3 0
0 0 1

 .

This choice of Ω can be checked by verifying that ΩA = B.

3. In this case more than one elementary operation is performed, so Ω is a
product of elementary operations, the right-most factor performing the
first operation, then the next to right-most, the second operation, and so
on, with the left factor performing the last operation:

Ω =

5 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

1 0
√

13
0 1 0
0 0 1

 .

If these products are carried out, we get0 5 0

1 0
√

13
0 0 1


5.

Ω =

(
0 1
1 0

)(
1 0
0 15

)(
1
√

3
0 1

)
=

(
0 15

1
√

3

)
7.

Ω =

1 0 0
0 0 1
0 1 0

 1 0 0
14 1 0
0 0 1

1 0 0
0 1 0
0 0 4

 =

 1 0 0
0 0 4
14 1 0


In these and later problems, the delta notation is sometimes useful:

δij =

{
1 if i = j,

0 if i 6= j.
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9. Let A = [aij ] be an n × m matrix. Now, B = [bij ] and E = [eij ] are
obtained, respectively, by interchanging rows s and t of A and In. Then,
for i 6= s and i 6= t,

bij = aij and eij = δij .

If i = s, bsj = atj and esj = δtj . And if i = t, bij = asj and eij = δsj .

Now consider the i, j −− element of EA. For i 6= s and i 6= t,

(EA)sj =
n∑
k=1

eikakj = aij = bij .

For i = s,

(EA)sj =
n∑
k=1

eskakj =
n∑
k=1

δtkakj = atj = bsj .

And for i = t,

(EA)tj =
n∑
k=1

eikakj =
n∑
k=1

δskakj = asj = btj

for j = 1, · · · ,m. Therefore EA = B.

11. Let A be n ×m. Now B and E are formed, respectively, from A and In
by adding α times row s to row t. For i 6= t, bij = aij and eij = δij , while
for i = t, btj = atj + αasj and etj = δtj + αδsj .

Now consider the i, j −− element of of EA. For i 6= t,

(EA)ij =
n∑
k=1

eikakj =
n∑
k=1

δikakj = aij .

For i = t,

(EA)tj =
n∑
k=1

etkakj =
n∑
k=1

(δtk + αakj)

= atj + αasj = bsj .

This shows that EA = B.

In Problems 12–23, keep in mind that a given matrix can be reduced by
different sequences of row operations, but the end result must be the same - a
matrix has only one reduced form. There may therefore be different matrices
Ω1 and Ω2 such that

Ω1A = AR = Ω2A.

We give one such matrix for each problem.
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13. We can reduce A by first subtracting row two from row one of I2, then
multiplying row one of the resulting matrix by 1/3:

I2 =

(
1 0
0 1

)
→
(

1 −1
0 1

)
→
(

1/3 −1/3
0 1

)
= Ω.

Then

ΩA = AR =

(
1 0 1/3 4/3
0 1 0 0

)
.

15. A is in reduced form, so A = AR.

For Problems 17–23, just Ω and AR are given.

17.

Ω =

(
0 1
1 −2

)
,AR =

(
1 1
0 0

)
.

19.

Ω =

(
−1/3 0

0 1

)
,AR =

(
1 −4/3 −4/3
0 0 0

)
21.

Ω =
1

4

 0 0 1
4 −4 −8
−4 8 8

 ,AR =

1 0 0 −3/4
0 1 0 3
0 0 1 0


23. 

0 0 1 0
0 1 3 0
1 0 −6 0
0 0 −1 1

 ,AR =


1
0
0
0


11.3 Solution of Homogeneous Linear Systems

In Problems 1–12, we use the facts that (1) the system AX = O has the same
solutions as the reduced system ARX = O, and (2) the solution of the reduced
system can be read by inspection from the reduced matrix AR.

1. The coefficient matrix and its reduced form are

A =

(
1 2 −1 1
0 1 −1 1

)
,AR =

(
1 0 1 −1
0 1 −1 1

)
.

Because AR has two nonzero rows and m = 4, the solution space has
dimension m − 2 = 2, which means that the general solution is in terms
of two of the unknowns, which can be given any values. Specifically, from
the reduced matrix,

x1 = −x3 + x4

x2 = x3 − x4.
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All solutions are given by

X =


x1

x2

x3

x4

 =


−x3 + x4

x3 − x4

x3

x4

 = x3


−1
1
1
0

+ x4


1
−1
0
1

 .

It looks a little neater to write the general solution

X = α


−1
1
1
0

+ β


1
−1
0
1


in which α and β are arbitrary real numbers. The solution space of this
system is the subspace of R4 having basis vectors

< −1, 1, 1, 0 >,< 1,−1, 0, 1 > .

3. The coefficient matrix and its reduced form are

A =

−2 1 2
1 −1 0
1 1 0

 ,AR =

1 0 0
0 1 0
0 0 1

 = I3.

Here A has rank 3, the number of nonzero rows of A, and m− rank (A) =
3− 3 = 0, so the solution space has dimension zero, consisting just of the
trivial solution

X =

0
0
0

 .

This is consistent with the reduced system being the system

x1 = 0, x2 = 0, x3 = 0.

5. The coefficient matrix is

A =


1 −1 3 −1 4
2 −2 1 1 0
1 0 −2 0 1
0 0 1 1 −1


and

AR =


1 0 0 0 9/4
0 1 0 0 7/4
0 0 1 0 5/8
0 0 0 1 −13/8

 .
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The solution space has dimension 5− 4 = 1 and the general solution is

X = α


−9/4
−7/4
−5/8
13/8

1

 .

The single vector < −9/4,−7/4,−5/8, 13/8, 1 > is a basis for the solution
space.

7. The coefficient matrix is

A =


−10 −1 4 1 1 −1

0 1 −1 3 0 0
2 −1 0 0 1 0
0 1 0 −1 0 1


and

AR =


1 0 0 05/6 5/9
0 1 0 0 2/3 10/9
0 0 1 0 8/3 13/9
0 0 0 1 2/3 1/9

 .

From the reduced system read the general solution

X = α


−5/6
−2/3
−8/3
−2/3

1
0

+ β


−5/9
−10/9
−13/9
−1/9

0
1

 .

The solution space is a subspace of R6 having dimension 2, with basis
vectors

< −5/6,−2/3,−8/3,−2/3, 1, 0 >,< −5/9,−10/9,−13/9,−1/9, 0, 1 > .

9. There is no x3 in the equations, so we actually have a system of three
equations in the four unknowns x1, x2, x4 and x5. The coefficient matrix
is

A =

0 1 −3 1
2 −1 1 0
2 −3 0 4


and

AR =

(
1 0 0 −5/14 0 1 0 −11/17
0 0 1− 6/7

)
.
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Now x1, x2 and x4 depend on x5 and

X = α


5/14
11/7
6/7
1

 .

The solution space is the subspace of R4 of dimension 1, having basis
vector < 5/14, 11/7, 6/7, 1 >.

11. The coefficient matrix is

A =


1 −2 0 0 1 −1 1
0 0 1 −1 1 −2 3
1 0 0 0 −1 2 0
2 0 0 −3 1 0 0


and

AR =


1 0 0 0 −1 2 0
0 1 0 0 −1 3/2 −1/2
0 0 1 0 0 −2/3 3
0 0 0 1 −1 4/3 0

 .

The general solution is

X = α



1
1
0
1
1
0
0


+ β



−2
−3/2
2/3
−4/3

0
1
0


+ γ



0
1/2
−3
0
0
0
1


.

The solution space is the subspace of R7 of dimension 3, with basis vectors

< 1, 1, 0, 1, 1, 0, 0 >,< −2,−3/2, 2/3,−4/3, 0, 1, 0 >,< 0, 1/2,−3, 0, 0, 0, 1 > .

13. The answer is yes. All that is required is that m− rank(A) > 0, so that
the solution space has positive dimension, hence non-zero vectors, which
are solutions of the system.

As a specific example, consider the system AX = O, where

A =

1 0 3
0 1 −1
3 0 9

 .

This is a homogeneous system with three equations in three unknowns.
We find that

AR =

1 0 3
0 1 −1
0 0 0

 .
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Then AR has two nonzero rows, so the solution space of AX = O has
dimension 3− 2 = 1 > 0. In fact, the general solution is

X = α

3
1
1

 .

15. Let the rows of A be R1, · · · ,Rn. These are vectors in Rm. Let R be the
row space of A, which is the subspace of Rm spanned by the row vectors.

Now, X is in the solution space S(A) of the homogeneous system with
coefficient matrix A exactly when AX = O. This is true exactly when
the dot product Rj ·X = O for j = 1, · · · , n, which is true exactly when
each row is orthogonal to X. But this is equivalent to X being orthogonal
to every linear combination of these rows, hence to every vector in the row
space R of A. This makes the solution space of the system the orthogonal
complement of the row space:

R⊥ = S(A).

Because the columns of At are the rows of A, similar reasoning shows that
the solution space S(At) of the system AtX = O has the column space
C of A as its orthogonal complement:

C⊥ = S(At).

11.4 Nonhomogeneous Systems

1. The augmented matrix is

[A
...B] =


3 −2 1

... 6

1 10 −1
... 2

−3 −2 1
... 0


with reduced form

[A
...B]R =


1 0 0

... 1

0 1 0
... 1/2

0 0 1
... 4

 .

The reduced forms of the matrix of coefficients of the system and the
augmented matrix have the same number of nonzero rows, so both A

and [A
...B] have the same rank (in this case 3). Therefore this system
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is consistent. We can read the solution from the reduced form of the
augmented matrix:

X =

 1
1/2
4

 .

In this case the solution is unique because m minus the rank of A is
3 − 3 = 0, so the associated homogeneous system has only the trivial
solution.

3. We have

[A
...B] =


2 −3 0 1 0 −1

... 0

3 0 −2 0 1 0
... 1

0 1 0 −1 0 6
... 3


and

[A
...B]R =


1 0 0 −1 0 17/2

... 9/2

0 1 0 −1 0 6
... 3

0 0 1 −3/2 −1/2 51/4
... 25/4

 .

A and [A
...B] have the same rank 3, so the system has solutions. Read

from the reduced augmented matrix that

X =


9/2
3

25/4
0
0
0

+ α


1
1

3/2
1
0
0

+ β


0
0

1/2
0
1
0

+ γ


−17/2
−6
−51/4

0
0
1

 .

5. The augmented matrix is

[A
...B] =


0 3 0 −4 0 0

... 10

1 −3 0 0 4 −1
... 8

0 1 1 −6 0 1
... −9

1 −1 0 0 0 1
... 0


and its reduced form is

[A
...B]R =


1 0 0 0 −2 2

... −4

0 1 0 0 −2 1
... −4

0 0 1 0 −7 9/2
... −38

0 0 0 1 −3/2 3/4
... −11/2

 .
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Both A and [A
...B] have the same rank 4 (number of nonzero rows in

their reduced forms), so this system has a solution. From the reduced
augmented matrix we read the general solution

X =


−4
−4
−38
−11/2

0
0

+ α


2
2
7

3/2
1
0

+ β


−2
−1
−9/2
−3/4

0
1

 .

7. The augmented matrix is

[A
...B] =


8 −4 0 1/2 10

... 1

0 1 0 1 −1
... 2

0 0 1 −3 2
... 0


with reduced form

[AR

...C] =


1 0 0 1/2 3/4

... 9/8

0 1 0 1 −1
... 2

0 0 1 −3 2
... 0

 .

The system is consistent (same number of zero rows in AR and the reduced
augmented matrix), and

X =


9/8
2
0
0
0

+ α


−1/2
−1
3
1
0

+ β


−3/4

1
−2
0
1

 .

9. The augmented matrix is0 0 14 0 −3 0 1
... 2

1 1 1 −1 0 1 0
... −4


with reduced form1 1 0 1 3/14 1 −1/14

... −29/7

0 0 1 0 −3/14 0 1/14
... 1/7

 .
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The matrix of coefficients and its augmented matrix have rank 2, so the
system is consistent. The general solution is

X =



−29/7
0

1/7
0
0
0
0


+α



−1
1
0
0
0
0
0


+β



1
0
0
1
0
0
0


+γ



−3/14
0

3/14
0
1
0
0


+δ



−1
0
0
0
0
1
0


+ε


1/14 0
−1/14

0
0
0
1

 .

11. The augmented matrix is
7 −3 4 0

... −7

2 1 −1 4
... 6

0 1 0 −3
... −5


and the reduced augmented matrix is

1 0 0 19/15
... 22/15

0 1 0 −3
... −5

0 0 1 −67/13
... −121/15

 .

The rank of A and of the augmented matrix is 3, so the system is consis-
tent. The general solution is

X =


22/15
−5

−121/15
0

+ α


−19/15

3
67/15

1

 .

13. The augmented matrix is
4 −1 4

... 1

1 1 −5
... 0

−2 1 7
... 4


and its reduced form is 

1 0 0
... 16/57

0 1 0
... 99/57

0 0 1
... 23/57

 .
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A and the augmented matrix both have rank 3, which is also the number
of unknowns, so the system has a unique solution

X =

16/57
99/57
23/57

 .

15. Write

X =


α1

α2

...
αm


Let the columns of A be C1, · · · ,Cm. Then AX = B if and only if

α1C1 + · · ·+ αmCm = B.

This means that X can be a solution if and only if X is a linear combination
of the columns of A, hence is in the column space of A.

11.5 Matrix Inverses

Problem 1 shows all of the row operations used to reduce the matrix and find
the inverse, or show that the matrix is singular. For Problems 2–10, just the
inverse is given if the matrix is nonsingular.

1. Reduce−1 2
... 1 0

2 1
... 0 1

→ add 2 times row one to row two

−1 2
... 1 0

0 5
... 2 1



→ multiply row one by −1

1 −2
... −1 0

0 5
... 2 1


→ multiply row two by 1/5

1 −2
... −1 0

0 1
...2/5 1/5


→ add 2 times row two to row one

1 0
... −1/5 2/5

0 1
... 2/5 1/5

 .

Because I2 has appeared on the left, the given matrix is nonsingular and
the right two columns of this augmented matrix form the inverse matrix:

A−1 =
1

5

(
−1 2
2 1

)
.
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3.

A−1 =
1

12

(
−2 2
1 5

)
5.

A−1 =
1

12

(
3 −2
−3 6

)
7.

A−1 =
1

31

−6 11 2
3 10 −1
1 −7 10


9.

A−1 = − 1

12

 6 −6 0
−3 −9 2
3 −3 −2


11.

X = A−1B =
1

11


−1 −1 8 4
−9 2 −5 14
2 2 −5 3
3 3 −2 −1




1
2
0
−5

 =
1

11


−23
−75
−9
14


13.

X = A−1B

=
1

28

11 12 9
3 16 5
8 24 4

−4
5
8

 =
1

7

22
27
30


15.

X = A−1B = − 1

25

 5 −15 −15
−10 15 10
−5 10 0

 0
0
−7

 =
1

5

−21
14
0


11.6 Determinants

In Problems 1–6 we provide a sequence of row and/or column operations leading
to a determinant that is easily evaluated. Other sequences of operations can
also be used.

1. Add 2 times row two to row one and then −7 times row two to row three
to obtain∣∣∣∣∣∣

−2 4 1
1 6 3
7 0 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 16 7
1 6 3
0 −42 −17

∣∣∣∣∣∣ = (−1)3+1(1)

∣∣∣∣ 16 7
−42 −17

∣∣∣∣ = −22.
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3. Add column two to column one, then 2 times column two to column three:∣∣∣∣∣∣
−4 5 6
−2 3 5
2 −2 6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 5 21
1 3 14
0 −2 0

∣∣∣∣∣∣ = (−1)3+2(−2)

∣∣∣∣1 21
1 14

∣∣∣∣ = −14.

5. Add 2 times column three to column one and then add column three to
column two to obtain∣∣∣∣∣∣

17 −2 5
1 12 0
14 7 −7

∣∣∣∣∣∣ =

∣∣∣∣∣∣
27 3 5
1 12 0
0 0 −7

∣∣∣∣∣∣ = (−1)3+3(−7)

∣∣∣∣27 3
1 12

∣∣∣∣ = −2, 247.

For Problems 7–10, we just give the value of the determinant.

7. −122

9. 72

11. −15, 698

13. 3, 372

15. Add columns two, three and four to column one, then factor (a+b+c+d)
out of column one to obtain∣∣∣∣∣∣∣∣

a b c d
b c d a
c d a b
d a b c

∣∣∣∣∣∣∣∣ = (a+ b+ c+ d)

∣∣∣∣∣∣∣∣
1 b c d
1 c d a
1 d a b
1 a b c

∣∣∣∣∣∣∣∣
Now add

(−1)row two + row three − row four

to row one and factor out b− a+ d− c from the new row one to obtain

(a+ b+ c+ d)(b− a+ d− c)

∣∣∣∣∣∣∣∣
1 b c d
1 c d a
1 d a b
1 a b c

∣∣∣∣∣∣∣∣ .
17. Use induction to prove that, for n = 2, 3, · · · , the determinant of an n×n

upper triangular matrix is the product of the main diagonal elements.

For n = 2, this is obvious because∣∣∣∣a11 a12

0 a22

∣∣∣∣ = a11a22.

Now suppose the statement is true for some n ≥ 2. We want to prove that
it is true for n + 1. Let A be an n + 1 × n + 1 upper triangular matrix.
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Then ai1 = 0 for i = 2, · · · , n + 1, so by expanding by column one, we
have

|A| = a11|B|,

where B is the n × n upper triangular matrix obtained by deleting row
one and column one of A. By the inductive hypothesis,

|B| = a22a33 · · · an+1,n+1.

Then
|A| = a11a22 · · · an+1,n+1.

This completes the proof by induction.

11.7 Cramer’s Rule

1. |A| = 47 6= 0 so Cramer’s rule applies:

x1 =
1

47

∣∣∣∣ 5 −4
−4 1

∣∣∣∣ = −11

47
, x2 =

1

47

∣∣∣∣15 5
8 −1

∣∣∣∣ = −100

47
.

3. |A| = 132 and the solution is

x1 =
1

132

∣∣∣∣∣∣
0 −4 3
−5 5 −1
−4 6 1

∣∣∣∣∣∣ = − 66

132
= −1

2
,

x2 =
1

132

∣∣∣∣∣∣
8 0 3
1 −5 −1
−2 −4 1

∣∣∣∣∣∣ = −114

132
= −19

22
,

and

x3 =
1

132

∣∣∣∣∣∣
8 −4 0
1 5 −5
−2 6 −4

∣∣∣∣∣∣ =
24

132
=

2

11
.

5. |A| = −6 and

x1 =
5

6
, x2 = −10

3
, x3 = −5

6
.

7. |A| = 4 and the solution is

x1 = −172

2
= −86, x2 = −109

2
, x3 = −43

2
, x4 =

37

2
.

9. |A| = 93 and

x1 =
33

93
, x2 = −409

93
, x3 = − 1

93
, x4 =

116

93
.
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11.8 The Matrix Tree Theorem

1. The tree matrix for this graph is

T =


2 0 −1 0 −1
0 2 −1 −1 0
−1 −1 4 −1 −1
0 −1 −1 3 −1
−1 0 −1 −1 3

 .

Evaluate any 4× 4 cofactor of T to obtain 21 as the number of spanning
trees in the labeled graph.

3.

T =


4 −1 0 −1 −1 −1
−1 2 −1 0 0 0
0 −1 3 −1 −1 0
−1 0 −1 4 −1 −1
−1 0 −1 −1 3 0
−1 0 0 −1 0 2


and each cofactor gives 61 as the number of spanning trees

5.

T =


3 −1 0 0 −1 −1
−1 3 −1 0 −1 0
0 −1 4 −1 −1 −1
0 0 −1 2 −1 0
−1 −1 −1 −1 4 0
−1 0 −1 0 0 2


and the number of spanning trees is 61.
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Chapter 12

Eigenvalues and
Diagonalization

12.1 Eigenvalues and Eigenvectors

1.

pA(λ) = |λI2 −A| = λ2 − 2λ− 5

so the eigenvalues of A are 1 +
√

6 and 1−
√

6, with eigenvectors, respec-
tively,

V1 =

(√
6

2

)
,V2 =

(
−
√

6
1

)
.

The Gerschgorin circles are of radius 3 about (1, 0) and radius 2 about
(1, 0).

3. The characteristic equation is

λ2 + 3λ− 10 = 0

and eigenvalues and eigenvectors are

λ1 = −5,V1 =

(
7
−1

)
, λ2 = 2,V2 =

(
0
1

)
.

One Gerschgorin circle has radius 1 and center (2, 0), and the other is the
degenerate circle of radius 0 about (−5, 0).

5. pA(λ) = λ2 − 3λ+ 14,

λ1 = (3 +
√

47i)/2,V1 =

(
−1 +

√
47i

4

)
181
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λ2 = (3−
√

47i)/2,V2 =

(
−1−

√
47i

4

)
The Gerschgorin circles have radius 6, center (1, 0), and radius 2, center
(2, 0).

7. pA(λ) = λ3 − 5λ2 + 6λ.

λ1 = 0,V1 =

0
1
0

 , λ2 = 2,V2 =

2
1
0

 , λ3 = 3,V3 =

0
2
3


The Gershgorin circle has radius 3, center (0, 0).

9. pA(λ) = λ2(λ+ 3)

λ1 = −3,V1 =

1
0
0

 , λ2 = λ3 = 0,V2 =

1
0
3


All eigenvectors associated with the double eigenvalue 0 are constant mul-
tiples of V2. The Gershgorin circle has radius 2, center (−3, 0).

11. pA(λ) = (λ+ 14)(λ− 2)2,

λ1 = −14,V1 =

−16
0
1

λ2 = λ3 = 2,V2 =

0
0
1

 .

All eigenvectors associated with λ2 are constant multiples of V2. The
Gershgorin circles have radius 1, center (−14, 0) and radius 3, center (2, 0).

13. pA(λ) = λ(λ2 − 8λ+ 7),

λ1 = 0,V1 =

14
7
10

 , λ2 = 1,V2 =

6
0
5

 , λ3 = 7,V3 =

0
0
1


The Gershgorin circles have radius 2, center (1, 0), and radius 5, center
(7, 0).

15. pA(λ) = (λ− 1)(λ− 2)(λ2 + λ− 13),

λ1 = 1,V1 =


−2
−11

0
1

 , λ2 = 2,V2 =


0
0
1
0



λ3 =
−1 +

√
53

2
,V3 =


√

53− 7
0
0
2

 , λ4 =
−1−

√
53

2
,V4 =


−
√

53− 7
0
0
2
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The Gershgorin circles have radius 2, center (−4, 0) and radius 1, center
(3, 0).

17. We know that AE = λE. Then

A(AE) = A2E = A(λE)

= λAE = λ(λE) = λ2E.

This says that λ2 is an eigenvalue of A2 with eigenvector E. It is not a
routine inductive argument to show that λn is an eigenvalue of An with
eigenvector E, for any positive integer n.

12.2 Diagonalization

1. The characteristic equation is λ2 − 3λ+ 4 = 0, so the eigenvalues are

λ1 =
3 +
√

7i

2
and λ2 =

3−
√

7i

2
.

Corresponding eigenvectors are

V1 =

(
2

−3 +
√

7i

)
and V2 =

(
2

−3−
√

7i

)
.

The matrix

P =

(
2 2

−3 +
√

7i −3−
√

7i

)
diagonalizes A, and

P−1AP =

(
(3 +

√
7i)/2 0

0 (3−
√

7i)/2

)
.

If we wrote the eigenvectors in different order in defining the columns of
P, then the columns of P−1AP would be reversed.

3. The characteristic equation is λ2−2λ+1 = 0, with repeated root 1. Every
eigenvector is a scalar multiple of

V1 =

(
0
1

)
.

Because A does not have two independent eigenvectors, A is not diago-
nalizable.

5. The eigenvalues and corresponding eigenvectors are

λ1 = 0,V1 =

0
1
0

 , λ2 = 5,V2 =

5
1
0

 , λ3 = −2,V3 =

 0
−3
2

 .

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



184 CHAPTER 12. EIGENVALUES AND DIAGONALIZATION

The matrix P = 0 5 0
1 1 −3
0 0 2


diagonalizes A and

P−1AP =

0 0 0
0 5 0
0 0 −2

 .

7. Eigenvalues and corresponding eigenvectors are

λ1 = 1,V1 =

0
1
0

 , λ2 = λ3 = −2,V2 =

−3
1
0

 .

All eigenvectors associated with the repeated eigenvalue −2 are scalar
multiples of V2. Because A does not have three linearly independent
eigenvectors, A is not diagonalizable.

9. The characteristic equation is

(λ− 1)(λ− 4)(λ2 + 5λ+ 5) = 0.

Eigenvalues are λ1 = 1, λ2 = 4, λ3 = (−5+
√

5)/2, and λ4 = (−5−
√

5)/2).
Corresponding eigenvectors are

V1 =


1
0
0
0

 ,V2 =


0
1
0
0

 ,

V3 =


0

(2− 3
√

5)/41

(−1 +
√

5)/2
1

 ,V4 =


0

(2 + 3
√

5)/41

(−1−
√

5)/2
1

 .

Let

P =


1 0 0 0

0 1 (2− 3
√

5)/41 (2 + 3
√

5)/41

0 0 (−1 +
√

5)/2 (−1−
√

5)/2
0 0 1 1

 .

Then P diagonalizes A:

P−1AP =

1 0 0 0

0 1 0 00 0 (−5 +
√

5)/2 0

0 0 0 (−5−
√

5)/2

 .

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



12.2. DIAGONALIZATION 185

11. Let

D =


λ1 0 0 · · · 0
0 λ2 0 0 · · · 0
0 0 λ3 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · λn

 .

Then
D = P−1AP,

so
A = PDP−1.

Then

Ak = (PDP−1)k

= (PDP−1)(PDP−1 · · · (PDP−1)

= PDkP−1,

with the interior pairings of P and P−1 canceling.

Problems 12–15 can be solved using the idea of Problem 11, coupled with
the fact that the kth power of a diagonal matrix is the diagonal matrix formed
by raising each diagonal element to the kth power.

13. Eigenvalues of A are −1,−5, and the matrix of respective eigenvectors,

P =

(
4 0
1 1

)
diagonalizes A to

D =

(
−1 0
0 −5

)
.

Now,

P−1 =

(
1/4 0
−1/4 1

)
so compute

A6 = PD6P−1 =

(
1 0

−3906 15625

)
.

15. Eigenvalues of A are
√

2,−
√

2. Form

P =

(√
2 −

√
2

1 1

)
.

Then

P−1 =

( √
2/4 1/2

−
√

2/4 1/2

)
.
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Let

B =

(√
2 0

0 −
√

2

)
.

Then

A6 = PD6P−1 =

(
8 0
0 8

)
.

12.3 Special Matrices and Their Eigenvalues and
Eigenvectors

In Problems 1–12, find independent eigenvectors for the given matrix. Normalize
these by dividing each eigenvector by its length. These normalized eigenvectors
form columns of an orthogonal matrix that diagonalizes the given matrix.

It is routine to show that eigenvectors are orthogonal by taking their dot
product. We will omit the arithmetic of this verification.

1. We find eigenvectors

V1 =

(
1
2

)
,V2 =

(
−2
1

)
.

Divide each by its norm to get unit eigenvectors and form the orthogonal
matrix

Q =

(
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

)
.

This is an orthogonal matrix that diagonalizes A.

3. Eigenvectors are

V1 =

(
1 +
√

2
1

)
,V2 =

(
1−
√

2
1

)
.

Normalize these to form

Q =

 1+
√

2√
4+2
√

2

1−
√

2√
4−2
√

2
1√

4+2
√

2

1√
4−2
√

2

 .

5. Eigenvalues of A are 3,
√

2 − 1 and −
√

2 − 1, with corresponding eigen-
vectors

V1 =

0
0
1

 ,V2 =

 1√
2− 1
0

 V3 =

 1

−
√

2− 1
0

 .
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For an orthogonal matrix that diagonalizes A, let

Q =


0 1√

4−2
√

2

1√
4+2
√

2

0
√

2−1√
4−2
√

2

−
√

2−1√
4+2
√

2

1
√

2−1√
4−2
√

2

−
√

2−1√
4+2
√

2

 .

7. Eigenvalues are

7,
1

2
(5 +

√
41),

1

2
(5−

√
41)

with corresponding eigenvectors

V1 =

0
1
0

 ,V2 =

5 +
√

41
0
4

 ,V3 =

5−
√

41
0
4

 .

The following orthogonal matrix diagonalizes A:

Q =


1 5+

√
41√

82+10
√

41

5−
√

41√
82−10

√
41

1 0 0
0 4√

82+10
√

41

4√
82−10

√
41

 .

9. The matrix is not hermitian, skew-hermitian or unitary. Eigenvalues are
2, 2.

11. The matrix is skew-hermitian because St = −S. Eigenvalues are 0,
√

3i,−
√

3i.

13. The matrix is not unitary, hermitian or skew-hermitian. Eigenvalues are
2, i,−i.

15. Suppose H is hermitian. Then

H = Ht.

Then
HHt = HHt = HH = HH.

17. Suppose S is skew-hermitian. Then St = −S, so

sjj = −sjj for j = 1, 2, · · · , n.

Write sjj = ajj + ibjj . Then

sjj = ajj + ibjj = −ajj + ibjj = −ajj + ibjj .

But then each ajj = −ajj , so ajj = 0 for j = 1, 2, · · · , n. This makes each
diagonal element of S either pure imaginary (if bjj 6= 0) or zero.
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12.4 Quadratic Forms

1. The matrix of the quadratic form is

A =

(
−5 2
2 3

)
.

This matrix has eigenvalues −1 + 2
√

5,−1− 2
√

5 and the quadratic form
has standard form

(−1 + 2
√

5)y2
1 + (−1− 2

√
5)y2

2 .

3. The matrix is (
−3 2
2 7

)
with eigenvalues 2±

√
29. The standard form is

(2 +
√

29)y2
1 + (2−

√
29)y2

2 .

5. The matrix is (
0 −3
−3 4

)
with eigenvalues 2±

√
13. The standard form is

(2 +
√

13)y2
1 + (2−

√
13)y2

2 .

7. The matrix is (
0 −1
−1 2

)
with eigenvalues 1±

√
2. the standard form is

(1 +
√

2)y2
1 + (1−

√
2)y2

2 .
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Chapter 13

Systems of Linear
Differential Equations

13.1 Linear Systems

1. The two given solutions are linearly independent because neither is a con-
stant multiple of the other. Use them as columns of a fundamental matrix

Ω(t) =

(
−e2t 3e6t

e2t e6t

)
.

Notice that Ω(0) has a nonzero determinant, which is also an indicator
that the columns are independent.

Now we have a general solution

X(t) = Ω(t)C,

in which C is a 2× 1 matrix of constants. To satisfy the initial condition,
we need to choose C so that

Ω(0)C =

(
0
4

)
.

This requires that (
−1 3
1 1

)(
c1
c2

)
=

(
0
4

)
.

Then c1 = 3, c2 = 1, so the solution of the initial value problem is

X(t) =

(
−e2t 3e6t

e2t e6t

)(
3
1

)
=

(
−3e2t + 3e6t

3e2t + e6t

)
.

189
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190 CHAPTER 13. SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

3. Because Φ(0) and Φ(0) are independent in R2, these solutions are inde-
pendent. Form the fundamental matrix

Ω(t) =

(
(2 + 2

√
3)e(1+2

√
3t) (2− 2

√
3)e(1−2

√
3)t

e(1+2
√

3)t e(1−2
√

3)t

)
.

Then X(t) = Ω(t)C is a general solution. To solve the initial value prob-
lem, we need

Ω(0)C =

(
2
2

)
and we find that we must choose

c1 = 1− 1

6

√
3, c2 = 1 +

1

6

√
3.

5. Form the fundamental matrix

Ω(t) =

et −et e−3t

et 0 3e−3t

0 et e−3t

 .

The general solution is X(t) = Ω(t)C. To solve the initial value problem,
we need C such that

Ω(0)C =

 1
−3
5

 .

Solve this equation to get

C =

24
14
−9

 .

13.2 Solution of X′ = AX When A Is Constant

In these problems, different fundamental matrices may be found, depending on
the choice of eigenvectors used corresponding to eigenvalues of the coefficient
matrix.

In each problem, the general solution has the form X = Ω(t)C, where Ω(t)
is a fundamental matrix. We will give one choice for Ω(t).

1.

Ω(t) =

(
7e3t 0
5e3t e−4t

)
3.

Ω(t) =

(
1 e2t

−1 e2t

)
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5.

Ω(t) =

 1 2e3t −e−4t

6 3e3t 2e−4t

−13 −2e3t e−4t


7. A has eigenvalues and eigenvectors

2 + 2i,
(
2i 1

)
, 2− 2i,

(
−2i

1

)
.

Write (
2i
1

)
=

(
0
1

)
+ i

(
2
0

)
to form two independent solutions

Φ1(t) = e2t

(
−2 sin(2t)

cos(2t)

)
and

Φ2(t) = e2t

(
2 cos(2t)
sin(2t)

)
.

Use these as columns of a fundamental matrix

Ω(t) =

(
−2 sin(2t) 2 cos(2t)

cos(2t) sin(2t)

)
.

9. A has eigenvalues 2, 5, 5, with corresponding eigenvectors1
0
0

 ,

−3
−3
1

 .

All eigenvectors associated with 5 are scalar multiples of this eigenvector.
Immediately we can write two independent solutions

Φ1(t) = e2t

1
0
0


and

Φ2(t) = e5t

−3
−3
1

 .

For a third solution, denote the eigenvector associated with 5 as E and let

Φ3(t) = Ete5t + Ke5t.

Substitute this into X′ = AX and use the fact that AE = E to obtain

E + 5K = AK.
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If we let

K =

ab
c

 ,

we obtain

−3a+ 5b+ 6c = −3

3b+ 9c = −3

−b− 3c = 1.

Then a = −2/3, b = −1, c = 0, so

K =

(
−2/3
−1 0

)
and we obtain the third solution

Φ3(t) =

−3te5t − (2/3)e5t

−3te5t − e5t

te5t

 .

The three solutions obtained are linearly independent and can be used to
form the columns of a fundamental matrix.

11. The coefficient matrix has eigenvalues 2+2i and 2−2i, with corresponding
eigenvectors (

2i
1

)
,

(
−2i

0

)
.

From these form two independent solutions which for the columns of the
fundamental matrix

Ω(t) =

(
−2e2t sin(2t) 2e2t cos(2t)
e2t cos(2t) e2t sin(2t)

)
.

13. The coefficient matrix has eigenvalues 1 ± i. An eigenvector associated
with 1 + i is (

2 + i
1

)
.

Form the fundamental matrix

Ω(t) = et
(

2 cos(t)− sin(t) cos(t) + 2 sin(t)
cos(t) sin(t)

)
.

15. The coefficient matrix has eigenvalues −2,−1 + 2i, −1− 2i. From −2 we
obtain the solution

Φ(t) = e−2t

0
0
1

 .
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An eigenvalue for −1 + 2i is 1
1
3

+ i

0
2
0

 .

This gives us two more solutions:

Φ2(t) = e−t

 cos(2t)
cos(2t)− 2 sin(2t)

3 cos(2t)


and

Φ3(t) = e−t

 sin(2t)
2 cos(2t) + sin(2t)

3 sin(2t)

 .

These solutions form the columns of a fundamental matrix.

17. The coefficient matrix has eigenvalues 3, 3, and every eigenvector is a scalar
multiple of

E =

(
1
0

)
.

One solution is

Φ1(t) =

(
e3t

0

)
.

Attempt a second solution

Φ2(t) = Ete3t + Ke3t.

Solve for K to get

K =

(
0

1/2

)
.

Then

Φ2(t) =

(
te3t

e3t/2

)
.

These solutions form columns of a fundamental matrix.

19. The coefficient matrix has eigenvalues 4 +
√

29i and 4−
√

29i, with corre-
sponding eigenvectors (

−2
3

)
+ i

(
−
√

29
0

)
.

This gives us two independent solutions:

Φ1(t) = e4t

(
−2 cos(

√
29t) +

√
29 sin(

√
29t)

3 cos(
√

29t)

)
and

Φ2(t) = e4t

(
−
√

29 cos(
√

29t)− 2 sin(
√

29t)

3 sin(
√

29t)

)
.
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21. The coefficient matrix has eigenvalues 1, 1, 3, 0, with corresponding eigen-
vectors

V1 =


0
−2
−2
1

 ,V2 =


1
0
0
0

 ,V3 =


3
2
2
0

 ,V4 =


2
0
1
0

 .

We can write a general solution

X(t) = V1e
t + V2e

t + V3e
3t + V4.

13.3 Exponential Matrix Solutions

In Problems 1–8, the exponential matrix can be obtained using the Putzer
algorithm or a software program.

1.

eAt =

(
cos(2t)− 1

2 sin(2t) 1
2 sin(2t)

− 5
2 sin(2t) cos(2t) + 1

2 sin(2t)

)
3.

eAt = e3t

(
cos(2t) + sin(2t) − sin(2t)

2 sin(2t) cos(2t)− sin(2t)

)
5.

eAt = et
(

cos(2t) 2 sin(2t)
− 1

2 sin(2t) cos(2t)

)
7.

eAt = e−t/2

(
cos(3

√
3t/2) + 1√

3
sin(3

√
3t/2) − 2√

3
sin(3

√
3t/2)

2√
3

sin(3
√

3t/2) cos(3
√

3t/2)− 1√
3

sin(3
√

3t/2)

)

9. First, because D is a diagonal matrix, Dn is a diagonal matrix for any
positive integer n, and the diagonal element of Dn is dnj . Then

eDt =
∞∑
n=0

1

n!
Dntn

and the diagonal element of eDt is

∞∑
n=0

1

n!
(dj)

ntn,

which is edjt.
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11. From the result of Problem 10,

eAt = PeDtP−1,

where P−1AP = D, the diagonal matrix having the eigenvalues λ1, · · · , λn
of A down its diagonal. But from the result of Problem 9, eDt is the di-
agonal matrix having diagonal elements eλjt.

13.4 Solution of X′ = AX + G for Constant A

1. The coefficient matrix A has the repeated eigenvalue 3, 3, and every eigen-
vector is a scalar multiple of (

1
−1

)
.

One solution of the homogeneous system X′ = AX is

e3t

(
1
−1

)
.

Using methods from Section 13.2, find a second, independent solution of
this homogeneous system to write the fundamental matrix

Ω(t) = e3t

(
1 + 2t 2t
−2t 1− 2t

)
.

For a particular solution of the nonhomogeneous system, first compute

Ω−1(t) = e−3t

(
1− 2t −2t

2t 1 + 2t

)
.

Now use variation of parameters to compute a solution of the nonhomo-
geneous system. For this method, we need

u(t) =

∫
Ω−1(t)G(t) dt

=

∫
e3t

(
1− 2t −2t

2t 1 + 2t

)(
−3et

e3t

)
dt

=

∫ (
6te−2t − 3e−2t − 2t
−6te−2t + 1 + 2t

)
dt =

(
−3te−2t − t2

(3/2)(1 + 2t)e−2t + t+ t2

)
.

The general solution is

X(t) = Ω(t)C + Ω(t)u(t)

= e3t

(
1 + 2t 2t
−2t 1− 2t

)(
c1
c2

)
+ e3t

(
1 + 2t 2t
−2t 1− 2t

)(
−3te−2t − t2

(3/2)(1 + 2t)e−2t + t+ t2

)
=

(
e3t(c1(1 + 2t) + 2c2t) + t2e3t

e3t(−2c1t+ c2(1− 2t)) + (t− t2)e3t + 3et/2

)
.
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3. A has eigenvalues 6, 6 and eigenvectors are scalar multiples of(
1
1

)
.

We find the fundamental matrix

Ω(t) =

(
1 1 + t
1 t

)
for the associated homogeneous system. Use this and variation of param-
eters to find the general solution of the nonhomogeneous system:

X(t) = e6t

(
c1 + c2(1 + t) + 2t+ t2 − t3

c1 + c2t+ 4t2 − t3
)
.

5. A has eigenvalues 1, 1, 3, 3. The eigenvalue 3 has two independent eigen-
vectors 

0
1
0
1

 ,


0
−9
2
0

 ,

and 1 has the eigenvector 
0
0
0
1

 ,

with all other eigenvectors associated with 1 scalar multiples of this one.
A fundamental matrix for the homogeneous system X′ = AX is

Ω(t) =


0 et 0 0
0 −2etet −9e3t

0 0 0 2e3t

et −5tet e3t 0

 .

The nonhomogeneous system has general solution

X(t) =


c2e

t

−2c2e
t + (c3 − 9c4)e3t + et

2c4e
3t

(c1 − 5c2t)e
t + c3e

3t + (1 + 3t)et

 .

For Problems 6–9, the idea is to find a general solution for the system, then
solve for the constants to obtain the solution satisfying the initial condition. For
these problems only the solution of the initial value problem is given.

7.

X(t) =

(
(−1− 14t)et

(3− 14t)et

)
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9.

X(t) =

 (6 + 12t+ (1/)t2)e−2t

(2 + 12t+ (1/2)t2)e−2t

(3 + 38t+ 66t2 + (13/6)t3)e−2t


13.5 Solution by Diagonalization

1. The coefficient matrix A is diagonalized by

P =

(
1 1
1 4

)
and we find that

P−1 =
1

3

(
4 −1
−1 1

)
.

The system for Z is

Z′ =

(
−1 0
0 2

)
Z +

1

3

(
4 −1
−1 1

)(
0

10 cos(t)

)
.

This is the system

Z′(t) =

(
z′1
z′2

)
=

(
−z1

2z2

)
+

1

3

(
−10 cos(t)
10 cos(t)

)
.

Solve these two independent differential equations to get

Z(t) =

(
c1e
−t − (5/3) cos(t)− (5/3) sin(t)

c2e
2t − (4/3) cos(t) + (2/3) sin(t)

)
.

Then

X(t) = PZ(t) =

(
c1e
−t + c2e

2t − 3 cos(t)− sin(t)
c1e
−t + 4c2e

2t − 7 cos(t) + sin(t)

)
.

3. The coefficient matrix has eigenvalues 0, 2 and is diagonalized by

P =

(
1 1
−1 1

)
which has inverse

P−1 =
1

2

(
1 −1
1 1

)
.

The system for Z(t) has the solution

Z(t) =

(
c1 − 2t+ e3t

c2e
2t − 1 + 3e3t

)
.

Then

X(t) =

(
c1 + 2c2e

2t − 1− 2t+ 4e3t

−c1 + c2e
2t − 1 + 2t+ 2e3t

)
.
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5. A has eigenvalues 3i,−3i and is diagonalized by

P =

(
1 + i 1− i

3 3

)
.

We find that

P−1 =
1

6

(
−3i 1 + i
3i 1− i

)
.

The transformed problem for Z has the solution

Z(t) =

(
d1e

3it + ((2− i)/6)e2t

d2e
−3it + ((2 + i)/6)e2t

)
.

If Euler’s formula is used on the complex exponential terms, we obtain
the real solution

X(t) =

(
c1(cos(3t)− sin(3t))− c2(cos(3t) + sin(3t)) + e2t

3c1 cos(3t)03c2 sin(3t) + 2e2t

)
.

7. The coefficient matrix has eigenvalues 0, 3 and is diagonalized by

P =

(
2 −1
1 1

)
.

Compute

P−1 =
1

3

(
1 1
−1 2

)
.

The uncoupled system is

Z′ =

(
0 0
0 3

)
Z +

(
1/2 1/3
−1/3 2/3

)(
2t
5

)
.

The initial condition is

Z(0) = P−1X(0) =

(
25/3
11/3

)
.

Then

Z(t) =

(
(1/3)t2 + (5/3)t+ 25/3

(127/27)e3t + (2/9)t− 28/27

)
.

The solution of the initial value problem for X is

X(t) = PZ(t) =

(
−(127/27)e3t + (2/3)t2 + (28/9)t+ 478/27
(127/27)e3t + (1/3)t2 + (17/9)t+ 197/27

)
.

9. The coefficient matrix has eigenvalues 1, 1,−3, but there are two inde-
pendent eigenvectors associated with the repeated eigenvalue 1 and A is
diagonalized by

P =

1 −1 1
1 0 3
0 1 1

 .
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We find that

P−1 =

 3 −2 3
1 −1 2
−1 1 −1

 .

With X = PZ we obtain the uncoupled system

Z′ =

1 0 0
0 1 0
0 0 −3

Z +

 3 = 2 3
1 −1 2
−1 1 −1

−3e−3t

t
0

 .

The initial conditions are

Z(0) = P−1X(0) =

11
6
−4

 .

Solve this uncoupled system to obtain

X(t) = PZ(t) =

 (5/2)et − (8/3)e−3t + 3te−3t + (8/9) + (4/3)t
(27/4)et − (113/12)e−3t + 9te−3t + (5/3) + 3t

(17/4)et − (113/36)e−3t + 3te−3t + (8/9) + (4/3)t

 .
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Chapter 14

Nonlinear Systems and
Qualitative Analysis

14.1 Nonlinear Systems and Phase Portraits

1. The coefficient matrix is

A =

(
3 −5
5 −7

)
,

with eigenvalues −2,−2. Every eigenvector is a scalar multiple of(
1
1

)
.

The origin is an improper nodal sink.

For Problems 3 − −16, only the eigenvalues of the coefficient matrix, and
the classification of the origin, are given. As typical cases, phase portraits are
drawn for the systems of Problems 3, 5, 6, 7 and 11.

Phase portraits are included for the systems of Problems 3, 4, 5 and 11.

3. eigenvalues 2i,−2i; center

5. 4 + 5i, 4− 5i, spiral point

7. 3, 3, and the coefficient matrix does not have two independent eigenvectors;
improper node

9. eigenvalues −2 +
√

3i,−2−
√

3i, spiral sink

11.
√

5,−
√

5, saddle point

13. −3 +
√

7,−3−
√

7, both eigenvalues negative, nodal sink

201
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Figure 14.1: Center of Problem 3.

Figure 14.2: Spiral source of Problem 5.
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Figure 14.3: Saddle point of Problem 11.

15. 2 +
√

3, 2−
√

3, nodal source

17. (a) First, write
dx

dt
=

1

t
x

as
1

x
dx =

1

t
dt.

Integrate to get

ln(x) = ln(t) + c

for x > 0, t > 0. Then x = ct with c constant. Put this into the second
equation to get

y′ = ct− 1

t
y.

Write this as

y′ +
1

t
y = ct,

or

ty′ + y = ct2.

Then

(ty)′ = ct2.

Integrate to get

ty =
c

3
t3 + d.
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Then

y =
c

3
t2 +

d

t
.

(b) Suppose x(t0) = 1 and y(t0) = 0. Then it is routine to solve for c and
d from part (a) to obtain

x(t) =
1

t0
t, y(t) =

1

3t0
t2 − 1

3t
t20.

(c) In part (b), we have trajectories through (1, 0) at any time t0 6= 0.
However, these translations are not trajectories of each other.

14.2 Critical Points and Stability

In Problems 1–16, the stability type of the origin is given, based on information
in Problems 1–16 of Section 14.1.

1. The origin is an improper node that is both stable and asymptotically
stable

3. stable but not asymptotically stable center

5. unstable spiral source

7. unstable improper node

9. stable and asymptotically stable spiral sink

11. unstable saddle point

13. stable and asymptotically stable nodal sink

15. unstable nodal source

17. If ε = 0, the eigenvalues are
√

5i,−
√

5i and the origin is a center, which
is stable but not asymptotically stable.

If ε > 0, the eigenvalues are

1

2
ε+

1

2

√
(ε− 2)2 − 24,

1

2
ε
√

(ε− 2)2 − 24.

These have positive real part. If 0 < ε < 2(1 +
√

6), then the origin is an
unstable spiral point. If ε > 2(1 +

√
6), the origin is an unstable saddle

point. If ε = 2(1 +
√

6), the origin is an unstable improper node.
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14.3 Almost Linear Systems

In Problem 1, the details of showing that the system is almost linear are in-
cluded. Problems 2–10 omit this demonstration and concentrate on analyzing
the critical point (0, 0).

1. To show that the system is almost linear, consider

lim
(x,y)→(0,0)

x2√
x2 + y2

= lim
r→0

r2 cos2(θ)

r

= lim
r→0

r cos2(θ) = 0.

The origin is a critical point and the matrix of coefficients of the linear
part is (

1 −1
1 2

)
,

which has eigenvalues

1

2
(3 +

√
3i) and

1

2
(3−

√
3)i.

The origin is an unstable spiral point of the linear part, hence also of the
given system.

3. The linear part has matrix

A(0,0) =

(
−2 2
1 4

)
with eigenvalues 1+

√
11, 1−

√
11. These are of opposite sign, so the origin

is an unstable saddle point.

5. The linear part has matrix (
3 12
−1 −3

)
,

with eigenvalues
√

3i,−
√

3i. The origin is a center for the linear part of
the system, so the nonlinear system could have a center or a spiral point
there.

7. The linear part has matrix (
−3 −4
1 1

)
.

This matrix has eigenvalues −1,−1, and all eigenvectors are scalar multi-
ples of (

−2
1

)
.

The origin is a stable improper nodal sink.
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9. The linear part has matrix (
−2 −1
−4 1

)
with eigenvalues 2,−3, so the origin is an unstable saddle point.

11. Refer to these as systems I and II, in the order given.

(a) For each system the linear part has coefficient matrix

A =

(
0 1
−1 0

)
with eigenvalues i,−i. Therefore the origin is a center for each system.

(b) For The first system, use polar coordinates, with

x = r cos(θ), y = r sin(θ)

and √
x2 + y2 = r.

Then

lim
(x,y)→(0,0)

−x
√
x2 + y2√

x2 + y2
= lim
r→0

−r2 cos(θ)

r

= lim
r→0
−r cos(θ) = 0,

independent of θ. And, similarly

lim
(x,y)→(0,0)

−y
√
x2 + y2√

x2 + y2
= lim
r→0
−r sin(θ) = 0.

Therefore the first system is almost linear. The argument is essentially
the same for the second system.

(c) With r2 = x2 + y2, we have

rr′ = xx′ + yy′,

where primes denote differentiation with respect to t. Now insert the
expressions for x′ and y′ from the differential equations of system I to
obtain

rr′ = x(y − x
√
x2 + y2) + y(−x− y

√
x2 + y2)

= −(x2 + y2)
√
x2 + y2

= −r3.
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Then

r′ =
dr

dt
= −r2 for system I.

Similarly, if we insert the expressions for x′ and y′ from system II, we
obtain

rr′ = x(y + x
√
x2 + y2) + y(−x+ y

√
x2 + y2)

= (x2 + y2)
√
x2 + y2

= r3.

Then
dr

dt
= r2 for system II.

(d) For system I,
dr

dt
= −r2.

This is the separable equation

− 1

r2
dr = dt.

This shows that, for system I, r′(t) < 0, so the distance between the point
and the origin is decreasing with time.

Now integrate the differential equation for r(t) to get

1

r
= t+ c.

To satisfy the initial condition r(t0) = r0, we need

1

r0
= t0 + c,

so

c =
1

r0
− t0.

Then

r(t) =
1

t− t0 + 1/r0

for system I. Then

r(t)→ 0 as t→∞.

The first system is asymptotically stable at the origin.

(e) By an entirely analogous derivation, for system II,

r′ = r2 > 0
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so r(t) is increasing with time for system II. Solve this separable differential
equation subject to r(t0) = r0 to get

r(t) =
1

1/r0 + t0 − t
.

Then for system II, r(t)→∞ as t→ t0 + 1/r0 from the left. We conclude
from this that the second system is unstable at the origin.

Parts (d) and (e) show that, in the case of a center at the origin, behavior
of the the linear part of an almost linear system at the origin does not
provide definitive information about the stability of the origin for the
nonlinear system.

13. Using results from Problem 11, we have

rr′ = xx′ + yy′

= x(y + εx(x2 + y2)) + y(−x+ εy(x2 + y2))

= ε(x2 + y2)(x2 + y2)

= εr4.

Then
dr

dt
= εr3.

This is separable
1

r3
dr = ε dt.

Integrate to get

−1

2
r−2 = εt+ c.

Then

r(t) =
1√

k − 2εt
,

where k = 2c is an arbitrary constant which is determined by specifying
a point that the trajectory is to pass through at some positive time.

If ε < 0, then

r(t) =
1√

k + 2|ε|t
→ 0

as t→∞. In this case trajectories approach the origin as t→∞ and the
nonlinear system is asymptotically stable.

However, something different happens if ε > 0. Suppose r(0) = ρ, so a
trajectory starts at a point ρ units from the origin at time zero. Then
k = 1/ρ2 and

r(t) =
1√

(1/ρ)2 − 2εt
.

Now, as t starts at zero and increases toward 1/(2ερ2), r(t)→∞, so there
is a time close to which the point is arbitrarily far from the origin. This
makes the origin unstable.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



14.4. LINEARIZATION 209

14.4 Linearization

1. For critical points other than the origin, solve

x− y + x2 = 0, x+ 2y = 0

to get (−3/2, 3/4). We find that

A(−3/2,3/4) =

(
−2 −1
1 2

)
,

which has eigenvalues
√

3 and −
√

3. This critical point is an unstable
saddle point of the linear part, and therefore of the given system.

3. The critical point other than the origin is (−5,−5). We find that

A(−5,−5) =

(
−2 2
1 −6

)
.

This has eigenvalues −4 +
√

6,−4 −
√

6, which are unequal and both
negative. This critical point is a stable and asymptotically stable nodal
sink of the nonlinear system.

5. The system has one critical point other than the origin, (−1/2, 1/8). Cal-
culate

A(−1/2,1/8) =

(
3 12
−1/4 −3

)
,

with eigenvalues are
√

6,−
√

6, so this critical point is an unstable saddle
point.

7. Aside from the origin, the system has critical points (1/2,−1/2). We have

A(1/2,−1/2) =

(
−2 −3
1 1

)
with eigenvalues (−1±

√
3i)/2, so (1/2,−1/2) is a spiral point, stable and

asymptotically stable because the real part of the eigenvalues is negative.

9. The critical point other than the origin is (−3/8,−3/2). We find that

A(−3/8,−3/2) =

(
−2 −2
−4 1

)
with eigenvalues (−1 ±

√
23i)/2, so (−3/8,−3/2) is a stable and asymp-

totically stable spiral point.
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Chapter 15

Vector Differential Calculus

15.1 Vector Functions of One Variable

In Problems 1 and 2 the details of the differentiation are carried out both ways.
For Problems 3–8 just the derivative is given.

1. First use the product rule:

(f(t)F(t))′ = f ′(t)F(t) + f(t)F′(t)

= (−12 sin(3t))F(t) + 4 cos(3t)(6tj + 2k)

= −12 sin(3t)i + (24t cos(3t)− 36t2 sin(3t))j

+ (8 cos(3t)− 24t sin(3t))k.

If we first carry out the product, we have

f(t)F(t) = 4 cos(3t)i + 12t2 cos(3t)j + 8t cos(3t)k,

so

(f(t)F(t))′ = −12 sin(3t)i

+ (24t cos(3t)− 36t2 sin(3t))j + (8 cos(3t)− 24t sin(3t))k.

3. Apply the product rule for cross products:

(F(t)×G(t))′ =

∣∣∣∣∣∣
i j k
1 0 0
1 − cos(t) t

∣∣∣∣∣∣+

∣∣∣∣∣∣
i j k
t 1 4
0 sin(t) 1

∣∣∣∣∣∣
= −tj− cos(t)k + (1− 4 sin(t))i− tj + t sin(t)k

= (1− 4 sin(t))i− 2tj− (cos(t)− t sin(t))k.

211
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5.

(f(t)F(t))′ = (1− 8t2)i

+ (6t2 cosh(t)− (1− 2t3) sinh(t))j + (et − 6t2et − 2t3et)k

7.
(F(t)×G(t))′ = tet(2 + t)(j− k)

9.
F(t) = sin(t)i + cos(t)j + 45tk

is a position vector for the curve, and

F′(t) = cos(t)i− sin(t)j + 45k

is a tangent vector. The distance function along C is

s(t) =

∫ t

0

‖ F′(τ) ‖ dτ =

∫ t

0

√
2026 dτ =

√
2026t.

Then t = s/
√

2026 and we can write a position vector in terms of s:

G(s) = F(t(s)) = sin

(
s√

2026

)
i + cos

(
s√

2026

)
j +

45s√
2026

k.

Now we can write a tangent vector in terms of s:

G′(s) =
1√

2026

[
cos

(
s√

2026

)
i− sin

(
s√

2026

)
j + 45k

]
.

11. F = t2(2i + 3j + 4k) is a position vector for the curve, and

F′(t) = 2t(2i + 3j + 4k)

is a tangent vector. The distance function along the curve is given by

s(t) =

∫ t

1

‖ F′(ξ) ‖ dξ = 2
√

29

∫ t

1

ξ dξ =
√

29(t2 − 1).

Then

t =

√
1 + s/

√
29.

Let

G(s) = F(t(s)) =

(
s√
29

+ 1

)
(2i + 3j + 4k).

Then

G′(s) =
1√
29

(2i + 3j + k)

is a unit tangent vector.
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15.2 Velocity, Acceleration and Curvature

In Problems 1–10, we can compute

v = F′(t),a(t) = F′′(t), v(t) =‖ v(t) ‖

by straightforward calculations. Next,

T(t) =
1

v(t)
v(t) =

1

‖ F′(t) ‖
F′(t).

Tangential and normal components of the acceleration can be obtained as

aT =
dv

dt
and aN =

√
‖ a ‖2 −a2

T .

The unit normal is

N(t) =
1

aN
(a(t)− aTT(t)).

In this way it is not necessary to compute s(t) and write vectors in terms of s,
which is often awkward. We can also compute

N(t) =
1

‖ dT/dt ‖
dT

dt
.

Curvature is often easily computed as

κ =
aN
v2
.

We can also compute curvature as

κ =
‖ T′(t) ‖
‖ F′(t) ‖

.

κ can also be obtained from a formula requested in Problem 13:

κ =
‖ F′(t)× F′′(t) ‖
‖ F′(t) ‖3

.

1. The velocity is
v(t) = F′(t) = 3i + 2tk

and the speed is

v(t) =‖ v(t) ‖=
√

9 + 4t2.

The acceleration is
a(t) = F′′(t) = 2k.

A unit tangent is

T(t) =
1√

9 + 4t2
(3i + 2tk).
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The curvature is

κ =
‖ T′(t) ‖
‖ F′(t) ‖

=
6

(9 + 4t2)3/2
.

Finally,

aT =
dv

dt
=

4t√
9 + 4t2

and

aN =
√
‖ a ‖2 −a2

T =
6√

9 + 4t2
.

3.
v(t) = 2i− 2j + k, v = 3,

T =
1

3
(2i− 2j + k),

aT = aN = κ = 0

5.
v(t) = −3e−t(i + j− 2k),a(t) = 3e−t(i + j− 2k),

v(t) = 3
√

6e−t,T(t) =
1√
6

(−i− j + 2k),

aT = −3
√

6e−t, aN = 0, κ = 0

7.
v(t) = 2 cosh(t)j− 2 sinh(t)k, v(t) = 2

√
cosh(2t),

a(t) = 2 sinh(t)j− 2 cosh(t)k,

T(t) =
1√

cosh(t)
(cosh(t)j− sinh(t)k),

a(t) =
2 sinh(2t)√

cosh(2t)
, aN =

2√
cosh(2t)

,

κ =
1

2(cosh(2t))3/2

Here we have used the identity

cosh(2t) = cosh2(t) + sinh2(t).

9.
v(t) = 2t(αi + βj + γk),

a(t) = 2(αi + βj + γk)

v(t) = 2|t|
√
α2 + β2 + γ2,

T(t) =
1√

α2 + β2 + γ2
(αi + βj + γk)
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aN = 0, κ = 0,

and
aN = 2(sgn(t))

√
α2 + β2 + γ2,

where

sgn(t) =

{
1 if t > 0,

−1 if t < 0.

11. The position vector for a straight line has the form

F(t) = (a+ bt)i + (c+ dt)j + (p+ ht)k.

The tangent vector is the constant vector

T(t) = bi + dj + hk.

Then T′(t) = O, so κ = 0.

Conversely, suppose C is a smooth curve having zero curvature. Then

κ =‖ T′(s) ‖=‖ F′′(s) ‖= 0.

If we write
F(s) = f(s)i + g(s)j + h(s)k,

this means that
f ′′(s) = g′′(s) = h′′(s) = 0.

But then f(s) = a + bs, g(s) = c + ds, h(s) = p + hs for some constants
a, b, c, d, p, h. This makes F(s) the position vector of a straight line.

13. First write

T(t) =
1

‖ F′(t) ‖
f ′(t) =

1

v(t)
F′(t).

This enables us to write
F′ = vT.

Now, F′′(t) is the acceleration a(t), and T×T = O, so

vT× F′′ = vT(aTT + aNN)

= vaTT×T + vaNT×N

= vaNT×N

= v(v2κ)T×N.

But T and N are orthogonal unit vectors, so

‖ T×N ‖= 1.

Then
‖ F′ × F′′ ‖= v3κ.
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Finally,

v =‖ F′ ‖

so

κ =
‖ F′(t)× F′′(t) ‖
‖ F′(t) ‖

3

.

15.3 The Gradient Field

1.

∇ϕ(x, y, z) =
∂

∂x
(xyz)i +

∂

∂y
(xyz)j +

∂

∂z
(xyz)k = yzi + xzj + xyk,

∇ϕ(1, 1, 1) = i + j + k

The maximum value of Du(1, 1, 1) is

‖ ∇ϕ(1, 1, 1) ‖=
√

3.

The minimum value is −
√

3.

3.

∇ϕ(x, y, z) = (2y + ez)i + 2xj + xezk,

∇ϕ(−2, 1, 6) = (2 + e6)i− 4j− 2e6k.

The maximum value of Du(−2, 1, 6) is√
20 + 4e6 + 5e12

and the minimum value is the negative of this.

5.

∇ϕ(x, y, z) = 2y sinh(2xy)i + 2x sinh(2xy)j− cosh(z)k,

∇ϕ(0, 1, 1) = − cosh(1)k.

The maximum value of Du(0, 1, 1) is cosh(1). The minimum value is
− cosh(1).

7.

Duϕ(x, y, z) = ∇ϕ(x, y, z) · u

= ((8y2 − z)i + 16xyj− xk) · 1√
3

(i + j + k)

=
1√
3

(8y2 − z + 16xy − x)
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9.

Du(x, y, z)

= (2xyz3i + x2z3j + 3x2yz2k) · 1√
5

(2j + k)

=
1√
5

(2x2z3 + 3x2yz2)

11. Let ϕ(x, y, z) = x2 + y2 + z2 so the level surface is given by ϕ(x, y, z) = 4.
The gradient provides a normal vector

N(x, y, z) = ∇ϕ(x, y, z) = 2xi + 2yj + 2zk.

Then
N(1, 1,

√
2) = 2i + 2j + 2

√
2k

is normal to the surface at (1, 1,
√

2). The tangent plane at this point has
the equation

2(x− 1) + 2(y − 1) + 2
√

2(z −
√

2) = 0,

or
x+ y +

√
2z = 4.

The normal line at (1, 1,
√

2) has parametric equations

x = y = 1 + 2t, z =
√

2(1 + 2t)

for all real t.

13. Let ϕ(x, y, z) = x2 − y2 − z2. The normal vector at (1, 1, 0) is

N(1, 1, 0) = ∇ϕ(1, 1, 0) = 2i− 2j.

The tangent plane at (1, 1, 0) has equation

2x− 2y = 0

or x = y. The normal line at (1, 1, 0) has parametric equations

x = 1 + 2t, y = 1− 2t, z = 0.

15. A normal vector is given by

N = ∇(2x− cos(xyz))
∣∣∣
(1,π,1)

= 2i.

The tangent plane has equation x = 1 and the normal line at the point
has parametric equations

x = 1 + 2t, y = π, z = 1.

17. Because ∇ϕ(x, y, z) = i+k, the normal to the surface ϕ(x, y, z) = c is the
constant vector

N(x, y, z) = i + k.

The surface must therefore be the plane x+ z = c.
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15.4 Divergence and Curl

1.

∇ · F =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(2z) = 4,

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
x y 2z

∣∣∣∣∣∣ = 0i + 0j + 0k = O,

∇ · (∇× F) = 0.

3.
∇ · F = 2y + xey + 2,

∇× F = (ey − 2x)k,

∇ · (∇× F) =
∂

∂x
(ey − 2x) = 0.

5.
∇ · F = cosh(x) + xz sinh(xyz)− 1,

∇× F = (−1− xy sinh(xyz))i− j + yz sinh(xyz)k,

∇ · (∇× F) = (−y + y) sinh(xyz)

+ ((−xy2z + xy2z) cosh(xyz) = 0.

7.
∇ϕ = i− j + 4zk,

∇× (∇ϕ) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
1 −1 4z

∣∣∣∣∣∣ = 0.

9.
∇ϕ = −6x2yz2i− 2x3z2j− 4x3yzk,

∇× (∇ϕ) = (−4x3z + 4x3z)i

+ (−12x2yzi + 12x2yz)j + (6x2z2 − 6x2z2)k = O.

11.

∇ϕ = (cos(x+ y + z)− x sin(x+ y + z))i

− x sin(x+ y + z)j− x sin(x+ y + z)k,

∇× (∇ϕ) = (−x cos(x+ y + z) + x cos(x+ y + z))i

+ (− sin(x+ y + z)− x cos(x+ y + z) + sin(x+ y + z) + x cos(x+ y + z))j

+ (− sin(x+ y + z)− x cos(x+ y + z) + sin(x+ y + z) + x cos(x+ y + z))k

= O.
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13. Let F = f i + gj + hk. Then

∇ · (ϕF) = ∇ · (ϕf i + ϕgj + ϕhk)

=
∂

∂x
(ϕf) +

∂

∂y
(ϕg) +

∂

∂z
(ϕh)

= ϕxf + ϕyg + ϕzh

+ ϕ(fx + gy + hz)

= ∇ϕ · F + ϕ(∇ · F).

Next,

∇× (ϕF) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
ϕf ϕg ϕh

∣∣∣∣∣∣
=

[
∂

∂y
(ϕh)− ∂

∂z
(ϕg)

]
i

+

[
∂

∂z
(ϕf)− ∂

∂x
(ϕh)

]
j

+

[
∂

∂x
(ϕg)− ∂

∂y
(ϕf

]
k

=

[
∂ϕ

∂y
h− ∂ϕ

∂z
g

]
i +

[
∂ϕ

∂z
f − ∂ϕ

∂x
h

]
j +

[
∂ϕ

∂x
g − ∂ϕ

∂y
f

]
k

+ ϕ

[
∂h

∂y
− ∂g

∂z

]
i +

[
∂f

∂z
− ∂h

∂x

]
j +

[
∂g

∂x
− ∂f

∂y

]
k

= ∇ϕ× F + ϕ(∇× F).

15.5 Streamlines of a Vector Field

1. The streamlines satisfy

dx = −dy
y2

=
dz

z
.

Integrate dx = −(1/y2) dy to obtain

x =
1

y
+ c1.

Next integrate dx = (1/z) dz to get

x = ln |z|+ c2.

Using x as the parameter, we can write equations of the streamline for
this vector field:

x = x, y =
1

x− c1
, z = ex−c2 .
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For the streamline through (2, 1, 1), let x = 2. Then

1 =
1

2− c1
and 1 = e2−c2 .

Thenc1 = 1 and c2 = 2, so this streamline has parametric equations

x = x, y =
1

x− 1
, z = ex−2.

3. We have

x dx =
dy

ex
=
dz

−1
.

Integrate xex dx = dy to obtain

y = xex − ex + c1.

Integrate x dx = −dz to get

x2 = −2z + c2.

Using x as parameter, streamlines are given by

y = xex − ex + c1, z =
1

2
(c2 − x2).

For the streamline through (2, 0, 4), we need

e2 + c1 = 0 and 4 =
1

2
(c2 − 4).

Then c1 = −e2 and c2 = 12, so this streamline has parametric equations

x = x, y = xex − ex − e2, z =
1

2
(12− x2).

5. Streamlines satisfy
dy

2ez
= − dz

cos(y)
.

This is the separable equation

cos(y) dy = −2ez dz.

Integrate this to get
sin(y) = c2 − 2ez.

We also have x = c1. For the streamline through 3, π/4, 0), we need c1 = 3
and c2 = 2 +

√
2/2. With y as parameter, this streamline is given by

x = 3, y = y, z = ln

(√
2

4
+ 1− 1

2
sin(y)

)
.
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7. Circular streamlines about the origin in the x, y −−plane can be written
as x2 + y2 = r2, so

x dx+ y dy = 0.

Then
dx

y
= −dy

x
, dz = 0.

A vector field having these streamlines is

F(x, y) =
1

x
i− 1

y
j.
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Chapter 16

Vector Integral Calculus

16.1 Line Integrals

1. On C, x = t, y = t and z = t3, so∫
C

x dx− dy + z dz =

∫ 1

0

(t(1)− (1) + t3(3t2)) dt

=

∫ 1

0

(t− 1 + 3t5) dt = 0

3. ∫
C

(x+ y) ds =

∫ 2

0

(2t
√

1 + 1 + 4t2 dt

=

∫ 2

0

2t
√

2 + 4t2 dt =
1

6
(2 + 4t2)3/2

∣∣∣2
0

=
26
√

2

3

5. ∫
C

F · dR =

∫ 3

0

(cos(t)i + t2j + tk) · (i− 2tj + 0k) dt

=

∫ 3

0

(cos(t)− 2t3) dt = sin(3)− 81

2

7. Parametrize C as x = 2 cos(t), y = 2 sin(t), z = 0 for 0 ≤ t ≤ 2π. Then∫
C

F · dR =

∫ 2π

0

(2 cos(t)i + 2 sin(t)j) · (−2 sin(t)i + 2 cos(t)j) dt

=

∫ 2π

0

(−4 cos(t) sin(t) + 4 cos(t) sin(t)) dt = 0.

223
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224 CHAPTER 16. VECTOR INTEGRAL CALCULUS

9. ∫
C

−xyz dz =

∫ 9

4

−z
√
z dz

= −2

5
z5/2

∣∣∣9
4

= −422

5

11. Parametrize the line segment as

x = y = z = 1 + 3t for 0 ≤ t ≤ 1.

The work done is∫
C

F · dR =

∫ 1

0

((1 + 3t)2 − 2(1 + 3t)2 + 1 + 3t)(3) dt

=

[
(1 + 3t)2

2
− (1 + 3t)3

3

]1

0

= −27

2
.

13. Take F(x) = f(x)i and R(t) = tj for a ≤ t ≤ b. The graph of the curve is
defined by this position vector is the interval [a, b], and∫

C

F · dR =

∫ b

a

f(x) dx.

16.2 Green’s Theorem

1. The work done by F is

work =

∮
C

xy dx+ x dy =

∫∫
Ω

[
∂

∂x
(x)− ∂

∂y
(xy)

]
dA

=

∫ 1

0

∫ 6x

0

(1− x) dy dx+

∫ 4

1

∫ 8−2x

0

(1− x) dy dx

=

∫ 1

0

6x(1− x) dx+

∫ 4

1

(8− 2x)(1− x) dx = −8

3.

work =

∮
C

(− cosh(4x4) + xy) dx+ (e−y + x) dy

=

∫∫
D

[
∂

∂x
(e−y + x)− ∂

∂y
(− cosh(4x4) + xy)

]
dA

=

∫∫
D

(1− x) dA =

∫ 3

1

∫ 7

1

(1− x) dy dx

=

∫ 3

1

6(1− x) dx = −12
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5. ∮
C

FḋR

=

∫∫
D

[
∂

∂x
(−2xy)− ∂

∂y
(x2)

]
dA

=

∫∫
D

(−2y) dA =

∫ 6

1

∫ (22−2y)/5

(y+4)/5

−2y dx dy

=

∫ 6

1

(3y − 18)
2y

5
dy = −40

7. ∮
C

F · dR =

∫∫
D

∂

∂x
(8xy2) dA =

∫∫
D

8y2 dA.

To evaluate this integral, change to polar coordinates x = r cos(θ), y =
r sin(θ), with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 4. We get∫∫

D

8y2 dA =

∫ 2π

0

∫ 4

0

8r2 sin2(θ)r dr dθ

=

∫ 2π

0

sin2(θ) dθ

∫ 4

0

8r3 dr = 512π.

9. ∮
C

F · dR =

∫∫
D

[
∂

∂x
(−ex sin(y))− ∂

∂y
(ex cos(y))

]
dA

=

∫∫
D

(−ex sin(y) + ex sin(y)) dA = 0

11. ∮
C

FḋR =

∫∫
D

[
∂

∂x
(xy2 − ecos(y))− ∂

∂y
(xy)

]
dA

=

∫∫
D

(y2 − x) dA =

∫ 3

0

∫ 5−5x/3

0

(y2 − x) dy dx

=

∫ 3

0

1

3

(
5− 5x

3

)
dx−

∫ 3

0

x

(
5− 5x

3

)
], dx

=
95

4

13. By Green’s theorem,∮
C

− ∂

∂y
dx+

∂

∂x
dy =

∫∫
D

[
∂

∂x

(
∂u

∂x

)
− ∂

∂y

(
−∂u
∂y

)]
dA

=

∫∫
D

[
∂2u

∂x2
+
∂2u

∂y2

]
dA.
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15. If C does not enclose the origin, then Green’s theorem applies and∮
C

F · dR

=

∫∫
D

[
∂

∂x

(
x

x2 + y2
− 2y

)
− ∂

∂y

(
−y

x2 + y2
+ x2

)]
dA

=

∫∫
D

0 dA = 0.

If C does enclose the origin, let K be a circle about the origin of sufficiently
small radius r that K is in the region enclosed by C. Then, using the
extended Green’s theorem and polar coordinates, we have∮

C

F · dR =

∮
K

F · dR

=

∫ 2π

0

[(
−r sin(θ)

r2
+ r2 cos2(θ)

)
(−r sin(θ))

]
dθ

+

∫ 2π

0

[(
r cos(θ)

r2
− 2r sin(θ)

)
(r cos(θ))

]
dθ

=

∫ 2π

0

(1− r2 cos2(θ) sin(θ)− 2r2 sin(θ) cos(θ)) dθ

= θ +
r3

3
cos2(θ)− r2 sin2(θ)

∣∣∣2π
0

= 2π.

17. By a calculation like those of Problems 15 and 16, obtain∮
C

F · dR = 0

if C does not enclose the origin, and∮
C

F · dR =

∮
K

F · dR = 0

if C does enclose the origin, and K is a circle about the origin entirely in
the region enclosed by C.

16.3 Independence of Path and Potential The-
ory

1. First observe that
∂

∂y
(y3) =

∂

∂x
(3xy2 − 4)

on the entire plane, so this vector function is conservative. To find a
potential function, we can begin with

∂ϕ

∂x
= y3
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and integrate with respect to x to get

ϕ(x, y) = xy3 + k(y).

Then we must have

∂ϕ

∂y
= 3xy2 + k′(y) = 3xy2 − 4

to conclude that k′(y) = −4, so we can choose k(y) = −4y. Then

ϕ(x, y) = xy3 − 4y

is a potential function for F.

3. F is conservative over the entire plane because

∂

∂y
(16x) =

∂

∂x
(2− y2) = 0

for all (x, y). To find a potential function, we can begin with

∂ϕ

∂x
= 16x

and integrate with respect to y to get

ϕ(x, y) = 8x2 + k(y).

Then
∂ϕ

∂y
= k′(y) = 2− y2

so k(y) = 2y − y3/3 and

ϕ(x, y) = 8x2 + 2y − 1

3
y3

is a potential function.

5. First, if (x, y) 6= (0, 0), then

∂

∂y

(
2x

x2 + y2

)
= − 4xy

(x2 + y2)2
=

∂

∂y

(
2y

x2 + y2

)
.

Then F is conservative on the plane with the origin removed. For a po-
tential function, we can begin with

∂ϕ

∂x
=

2x

x2 + y2

and integrate with respect to x to get

ϕ(x, y) = ln(x2 + y2) + k(y).
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Then we need
∂ϕ

∂y
=

2y

x2 + y2
=

2y

x2 + y2
+ k′(y).

We can choose k(y) = 0 to obtain the potential function

ϕ(x, y) = ln(x2 + y2).

7. By inspection,
ϕ(x, y, z) = x− 2y + z

is a potential function for F, for all (x, y, z).

9. We find that ∇× F 6= O, so this vector field is not conservative.

In Problems 11–20 we provide a potential function to use in evaluating the
line integral, but do not include the details of finding this potential function.

11. By integrating, we find a potential function

ϕ(x, y) = x3(y2 − 4y).

Then ∫
C

F · dR = ϕ(2, 3)− ϕ(1, 1) = −24− 3 = −27.

13. In any region not containing points of the y− axis, we can use the potential
function

ϕ(x, y) = x2y − ln |y|.

If C does not cross the x− axis, then∫
C

F · dR = ϕ(2, 2)− ϕ(1, 3)

= 8− ln(2)− 3 + ln(3) = 5 + ln(3/2).

15. ϕ(x, y) = x3y2 − 6xy3, so∫
C

F · dR = ϕ(1, 1)− ϕ(0, 0) = −5.

17. ϕ(x, y, z) = x− 3y3z, so∫
C

F · dR = ϕ(0, 3, 5)− ϕ(1, 1, 1) = −403.

19. ϕ(x, y, z) = 2x3eyz, so∫
C

F · dR = ϕ(2, 1,−1)− ϕ(0, 0, 0) = 2e−2.
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21. Let C be a smooth path of motion having position vector R(t) = x(t)i +
y(t)j + z(t)k. Let L(t) be the sum of the potential and kinetic energies.
Then

L(t) =
m

2
‖ R′(t) ‖ −ϕ((xt), y(t), z(t))

=
m

2
R′(t) ·R′(t)− ϕ(x(t), y(t), z(t)).

Then

L′(t) =
m

2
(2R′′(t) ·R′(t))− ∂ϕ

∂x
x′(t)− ∂ϕ

∂y
y′(t)− ∂ϕ

∂z
z′(t)

= (mR′′(t) ·R′(t)−∇ϕ ·R′(t)
= (mR′′(t)−∇ϕ) ·R′(t).

Now, ∇ϕ is the force acting on the particle, so by Newton’s second law,

mR′′ = ∇ϕ.

Therefore L′(t) = 0.

16.4 Surface Integrals

1. On the surface, z = 10− x− 4y, so

dσ =
√

1 + (∂z/∂x)2 + (∂z/∂y)2 dA = 3
√

2 dA.

Then∫∫
Σ

x dσ =

∫∫
D

3
√

2x dA

= 3
√

2

∫ 5/2

0

∫ 10−4y

0

x dx dy =
3
√

2

2

∫ 5/2

0

(10− 4y)2 dy

=

√
2

8
(10− 4y)3

∣∣∣5/2
0

= 125
√

2.

3. On Σ,

dσ =
√

1 + 4x2 + 4y2 dA,

and D is the annulus 2 ≤ x2 + y2 ≤ 7. Then, using polar coordinates,∫∫
Σ

dσ =

∫ 2π

0

∫ √7

√
2

r
√

1 + 4r2r dr dθ

= 2π

[
1

12
(1 + 4r2)3/2

]√7

√
2

=
π

6
(293/2 − 27).
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5. On the surface, z2 = x2 + y2, so

2z
∂z

∂x
= 2x and 2z

∂z

∂y
= 2y.

Then
∂z

∂x
=
x

z
and

∂z

∂y
=
y

z
.

Then

dσ =

√
1 +

(x
z

)2

+
(y
z

)2

dA =
√

2 dA.

Then ∫∫
Σ

z dσ =

∫∫
D

√
2
√
x2 + y2 dA

=
√

2

∫ π/2

0

∫ 4

2

r2 dr dθ =
28π

3

√
2.

7. On the surface, dσ =
√

1 + 4x2 dA, so∫
Σ

y dσ =

∫∫
D

y
√

1 + 4x2 dA

=

∫ 2

0

∫ 3

0

y
√

1 + 4x2 dy dx =
9

2

∫ 2

0

√
1 + 4x2 dx

=
9

8
ln(4 +

√
17 + 4

√
17).

9. On Σ, dσ =
√

3 dA and z = x− y, so∫∫
Σ

z dσ =

∫∫
D

√
3(x− y) dA

=
√

3

∫ 1

0

∫ 5

0

(x− y) dy dx = −10
√

3.

16.5 Applications of Surface Integrals

1. The triangular shell is on the plane 6x + 2y + 3z = 6, which is the plane
through the three given points. The projection of Σ onto the x, y−plane
is the set D of points (x, y) such that 0 ≤ y ≤ 3− 2x. On Σ,

z = 2− 2

3
y − 2x.

Then

dσ =

√
1 +

4

9
+ 4 dA

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



16.5. APPLICATIONS OF SURFACE INTEGRALS 231

and

m =

∫∫
Σ

(xz + 1) dσ

=

∫∫
D

(
x

(
2− 2

3
y − 2x

)
+ 1

)
dA

=
7

3

∫ 1

0

∫ 3−3x

0

(
x

(
2− 2

3
y − 2x

)
+ 1

)
dy dx =

49

12
.

The first coordinate of the center of mass is

x =
12

49

∫
Σ

x(xz + 1) dσ

=
12

49

7

3

∫∫
D

x

(
x

(
2− 2

3
y − 2x

)
+ 1

)
dy dx

=
4

7

∫ 1

0

∫ 3−3x

0

x

(
x

(
2− 2

3
y − 2x

)
+ 1

)
dx

=

∫ 1

0

(
−24

7
x2 +

12

7
x4 +

12

7
x

)
dx =

12

35
.

The second coordinate is

y =
12

49

∫∫
Σ

y(xz + 1) dσ

=
4

7

∫ 1

0

∫ 3−3x

0

y

(
y

(
2− 2

3
y − 2x

)
+ 1

)
dy dx

=

∫ 1

0

(
−24

7
x− 18

7
x2 +

36

7
x3 − 12

7
x4 +

18

7

)
dx

=
33

35
.

And, without all the details, the third coordinate is

z =
12

49

∫∫
Σ

z(xz + 1) dσ =
24

35
.

3. On the surface,

dσ =
√

1 + (x/z)2 + (y/z)2 dA =
√

2 dA.

Then

mass =

∫∫
Σ

K dσ = K
√

2

∫∫
D

∫ 2π

0

∫ 3

0

r dr dθ = 9πK
√

2.

By symmetry, x = y = 0, and

z =
1

m

∫∫
Σ

z dσ

=

√
2K

m

∫ 2π

0

∫ 3

0

r2 dr dθ =
18
√

2Kπ

m
= 2.
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The center of mass is (0, 0, 2).

5. By symmetry of the surface and the density function, x = y = 0. Further,

dσ =
√

1 + 4x2 + 4y2 dA.

Then

m =

∫∫
Σ

√
1 + 4x2 + 4y2 dσ

=

∫∫
D

(1− 4x2 + 4y2) dA

=

∫ 2π

0

∫ √6

0

(1 + 4r2)r dr dθ

= 2π(39) = 78π.

Finally,

x =
1

m

∫∫
Σ

zδ(x, y, z) dσ

=
1

m

∫∫
D

(6− x2 − y2)(1 + 4x2 + 4y2) dA

=
1

m

∫ 2π

0

∫ √6

0

(6− r2)(1 + 4r2)r dr dθ

=
162π

m
=

27

13
.

7. A unit normal to the plane x+ 2y + z = 8 is

n =
1√
6

(i + 2j + k).

Then

F · n =
1√
6

(x+ 2y − z).

On Σ, z = 8− x− 2y, so

F · n = 2x+ 4y − 8.

Further, dσ =
√

1 + 4 + 1 dA =
√

6 dA, so the flux of F across the surface
is∫∫

Σ

F·n dσ =

∫∫
D

(2x+4y−8) dA =

∫ 4

0

∫ 8−2y

0

(2x+4y−8) dx dy =
128

3
.
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16.6 Gauss’s Divergence Theorem

1. ∇ · F = 1, so ∫∫
Σ

F · n dσ =

∫∫∫
M

∇ · F dV

= volume of V =
4

3
π43 =

256π

3
.

3. ∇ · F = 0, so ∫∫∫
M

∇ · F dV = 0.

5. With ∇ · F = 4, compute∫∫∫
M

∇ · F dV = 4(volume of )V =
8π

3
.

7. ∇ · F = 2(x+ y + z), so, using cylindrical coordinates, we have∫∫∫
M

∇ · F dV = 2

∫ 2π

0

∫ √2

0

∫ √2

r

(r cos(θ) + r sin(θ) + z)r dz dr dθ.

Do these integrations in turn. First,∫ √2

r

(r2(cos(θ)+sin(θ))+rz) dz = r2(cos(θ)+sin(θ))(
√

2−r)+
1

2
r(2−r2).

Next,∫ √2

0

[
r2(cos(θ) + sin(θ))(

√
2− r) +

1

2
r(2− r2)

]
dr =

1

3
(cos(θ)+sin(θ))+

1

2
,

and finally, ∫ 2π

0

(
1

3
(cos(θ) + sin(θ)) +

1

2

)
dθ = π.

Therefore ∫∫∫
M

∇ · F dV = 2π.

9. With the given conditions on F, Σ and M , we have∫∫
Σ

(∇× F) · n dσ =

∫∫∫
M

∇ · (∇× F) dV = 0

because ∇ · (∇× F) = 0.
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10. Apply the divergence theorem to get

1

3

∫∫
Σ

F · n dσ =
1

3

∫∫∫
M

(∇ ·R) dV

=
1

3

∫∫∫
M

3 dV = volume of M.

16.7 Stokes’s Theorem

1. The surface is a function of θ and ϕ, and (θ, ϕ) varies over its parameter
domain 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π. This is a rectangle in the θ, ϕ− plane,
with lower side L1, upper right side L2, top L3 and left side L4. For
orientation, imagine (θ, ϕ) moves around this rectangle counterclockwise,
starting along L1 from the origin. We want to know what each side maps
to on the surface.

On L1, the point (θ, 0) moves from (0, 0) to (2π, 0) as θ increases from 0
to 2π. The image point

Σ(θ, 0) = (R cos(θ), R sin(θ), 0)

moves from (R, 0, 0) along the circle x2 + y2 = R2 in the plane z = 0, all
the way around to end at (R, 0, 0).

Then the point (2π, ϕ) moves up along L2 as ϕ increases from 0 to π.
Image points of points (2π, ϕ) on L2 are

Σ(2π, ϕ) = (R cos(ϕ), 0, R sin(ϕ))

which is a half-circle x2 + z2 = R2 in the y = 0 plane, starting at (R, 0, 0)
and ending at (−R, 0, 0).

From (2π, π), (θ, ϕ) now moves left along L3. The points are (θ, π), but
θ varies from 2π to 0 to maintain counterclockwise orientation on the
rectangle. The image points of L3 are

Σ(θ, π) = (−R cos(θ),−R sin(θ), 0)

asθ varies from2π to 0. The image of L3 on the surface consists of the
points

Σ(θ, π) = (−R cos(θ),−R sin(θ), 0),

and this point moves along the half-circle

x2 + y2 = R2

from (−R, 0, 0) to (−R, 0, 0) in the z = 0 plane.

Finally, on L4, θ = 0 and ϕ varies from π to 0. Image points are

Σ(0, ϕ) = (R cos(ϕ), 0, R sin(ϕ))
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from (−R, 0, 0) to (R, 0, 0).

Now trace out the image point on the surface as (θ, ϕ) moves over all
four sides of the rectangle. This curve on the graph of the surface is the
boundary of Σ.

In Problems 3–8, one side of Stokes’s theorem is computed in detail, with the
choice being determined by which side appears to be the easiest computation.

3. The boundary curve C of the surface is the top of the parabolic bowl.
This is the circle of radius 3 about (0, 0, 9). Parametrize C by

x = 3 cos(t), y = 3 sin(t), z = 9 for 0 ≤ t ≤ 2π.

On C,
F(t) = 9 cos(t) sin(t)i + 27 sin(t)j + 27 cos(t)k.

Further,
dR = (−3 sin(t)i + 3 cos(t)j) dt.

Then
F · dR = (−27 cos(t) sin2(t) + 81 cos(t) sin(t)) dt.

A routine integration gives∮
C

F · dR =

∫ 2π

0

(−27 cos(r) sin2(t) + 81 cos(t) sin(t)) dt = 0.

Evaluation of
∫∫

Σ
(∇× F) dσ involves considerably more labor.

5. The boundary curve of Σ is the circle x2 + y2 = 6 in the x, y− plane.
Parametrize C by

x =
√

6 cos(t), y =
√

6 sin(t), z = 0 for 0 ≤ t ≤ 2π.

Then ∮
C

F · dR =

∫ 2π

0

6 cos2(t)6 sin2(t) dt = 0.

7. The circulation is
∮
C

F · dR. Take Σ to be the disk

0 ≤ x2 + y2 ≤ 1

with boundary C parametrized by

x = cos(t), y = sin(t), z = 0 for 0 ≤ t ≤ 2π.

The proper unit normal to Σ (a disk in the x, y− plane) is n = k. Now,

∇× F = −azj + (2xy + 1)k.
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Then
(∇× F) · n = 2xy + 1.

Further, dσ = dA, so∮
C

F · dR =

∫∫
Σ

(∇× F) · n dσ

=

∫∫
D

(2xy + 1) dA =

∫ 2π

0

∫ 1

0

(2r3 cos(θ) sin(θ) + r) dr dθ = π.
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Chapter 17

Fourier Series

17.1 Fourier Series on [−L,L]
1. The Fourier coefficients are

a0 =
1

3

∫ 3

−3

4 dx = 8,

an =
1

3

∫ 3

−3

4 cos(nπξ/3) dξ = 0,

and

bn =
1

3

∫ 3

−3

4 sin(nπξ/3) dξ = 0.

The Fourier series of 4 on [−3, 3] is just

1

2
a0

or 4, as we might expect. This converges to 4 on [−3, 3].

3. Because cosh(πx) is an even function on [−1, 1], each bn = 0. Compute

a0 =

∫ 1

−1

cosh(πξ) dξ =
2

π
sinh(π)

and, for n = 1, 2, · · · ,

an =

∫ 1

−1

cosh(πξ) cos(nπξ) dξ =
2 sinh(π)

π

(−1)n

n2 + 1
.

The Fourier series is

1

π
sinh(π) +

∞∑
n=1

2 sinh(π)

π

(−1)n

n2 + 1
cos(nπx).

This converges to cosh(πx) for −1 ≤ x ≤ 1.

237
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For Problems 4–10, we give just the Fourier series and analyze its conver-
gence.

5. The series of f(x) on [−π, π] is

16

π

∞∑
n=1

1

2n− 1
sin((2n− 1)x),

converging to 
−4 for −π < x < 0,

4 for 0 < x < π,

0 for x = π and for x = −π.

7. The Fourier series of f(x) on [−2, 2] is

13

3
+

∞∑
n=1

(−1)n
[

16

(nπ)2
cos(nπx/2) +

4

nπ
sin(nπx/2)

]
.

This converges to {
f(x) for −2 < x < 2,

7 for x = 2 and for x = −2.

Convergence at the endpoints is determined by

1

2
(f(−2+) + f(2−)) =

1

2
(9 + 5) = 7.

9. The Fourier expansion of f(x) on [−π, π] is

3

2
+

2

π

∞∑
n=1

1

2n− 1
sin((2n− 1)x)

converging to 
1 for −π < x < 0,

2 for 0 < x < π,

3/2 at x = 0, x = π and at x = −π.

11. The Fourier series is

1

3
sin(3) + 6 sin(3)

∞∑
n=1

(−1)n+1

n2π2 − 9
cos(nπx/3),

converging to cos(x) on [−3, 3].
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13. The Fourier series converges to

3/2 for x = ±3,

2x for −3 < x < −2,

−2 for x = −2,

0 for −2 < x < 1,

1/2 for x = 1,

x2 for 1 < x < 3.

15. 
(2 + π2)/2 for x = ±π,

x2 for −π < x < 0,

1 for x = 0,

2 for 0 < x < π

17. 
−1 for −4 < x < 0,

0 for x = ±4 and for x = 0,

1 for 0 < x < 4

19. 
−4 for x = ±4,

3/2 for x = −2,

5/2 for x = 2,

f(x) for all other x in [−4, 4]

17.2 Sine and Cosine Series

1. The cosine series is just 4, a single term. The sine series is

16

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πx/3),

converging to 0 for x = 0 or x = 3 and to 4 for 0 < x < 3.

3. The cosine series is

1

2
cos(x) +

∞∑
n=1,n6=2

2n sin(nπ/2)

π(n2 − 4)
cos(nx/2)

converging to 
0 for 0 < x < π,

−1/2 for x = π,

cos(x) for π < x < 2π,

1 for x = 2π.
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The sine series is

− 2

3π
sin(x/2)−

∞∑
n=3

2n

(n2 − 4)
((−1)n + cos(nπ/2)) sin(nx/2),

converging to 
0 for 0 < x < π,

−1/2 for x = π,

cos(x) for π < x < 2π,

0 for x = 2π.

5. The cosine series is

4

3
+

16

π2

(−1)n

n2
cos(nπx/2),

converging to x2 for 0 ≤ x ≤ 2. The sine expansion is

− 8

π

∞∑
n=1

[
(−1)n

n
+

2(1− (−1)n)

n3π2

]
sin(nπx/2),

converging to x2 for 0 ≤ x < 2 and to 0 at x = 2.

7. The cosine expansion is

1

2
+
∞∑
n=1

1

n2π2
[−6(1 + (−1)n) + 12 cos(2nπ/3) + 4nπ sin(2nπ/3)] cos(nπx/3),

converging to 
x for 0 ≤ x < 2,

1 for x = 2,

2− x for 2 < x ≤ 3.

The sine series is

∞∑
n=1

1

n2π2
[12 sin(2nπ/3)− 4nπ cos(2nπ/3) + 12nπ(−1)n] sin(nπx/3),

converging to 
x for 0 ≤ x < 2,

1 for x = 1,

2− x for 2 < x < 3,

0 for x = 3.
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9. The cosine expansion is

5

6
+

16

π2

∞∑
n=1

[
1

n2
cos(nπ/4)− 4

n3π
sin(nπ/4)

]
cos(nπx/4),

converging to x2 for 0 ≤ x < 1 and to 1 for 1 < x ≤ 4.

The sine series is

∞∑
n=1

[
16

n2π2
sin(nπ/4) +

61

n3π3
(cos(nπ/4)− 1)− 2

(−1)n
nπ

]
sin(nπx/4),

converging to x2 for 0 ≤ x < 1, to 1 if 1 < x < 4, and to 0 at x = 4.

11. The Fourier cosine expansion of sin(x) on [0, π] is

2

π
− 4

π

∞∑
n=1

1

4n2 − 1
cos(2nx).

This converges to sin(x) for 0 ≤ x ≤ π. Put x = π/2 into this series to
obtain

cos(π/2) = 0 =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
cos(nπ).

Upon putting cos(nπ) = (−1)n we obtain

∞∑
n=1

(−1)n

4n2 − 1
=
π

4

(
2

π
− 1

)
=

1

2
− π

4
.

13. Use an argument similar to that made for Problem 12, except now the
Fourier coefficients of Ge(x) satisfy

an =
−L
L

∫ L

−L
Ge(x) cos(nπx/L) dx

=
2

L

∫ L

0

g(x) cos(nπx/L) dx

and

bn =
1

L

∫ L

−L
Ge(x) sin(nπx/L) dx = 0

becauseGe(x) cos(nπx/L) is even andGe(x) sin(nπx/L) is odd, andGe(x) =
g(x) for 0 ≤ x ≤ L.
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17.3 Integration and Differentiation of Fourier
Series

1. The Fourier expansion of f(x) on [−π, π] is

1

4
π +

∞∑
n=1

(
(−1)n − 1

n2π
cos(nx) +

(−1)n

n
sin(nx)

)
.

Because f is continuous and piecewise smooth on [−π, π], this series con-
verges to f(x) for −π < x < π.

f(x) satisfies the conditions of the theorem on term by term integration,
so this series can be integrated term by term to obtain∫ x

−π
f(ξ) dξ =

π

4
(x+ π)

+
∞∑
n=1

(
1

n3π
((−1)n − 1) sin(nx) +

(−1)n

n2
cos(nx)− 1

n2

)
.

3. The Fourier expansion of f(x) on [−π, π] is

1− 1

2
cos(x)− 2

∞∑
n=2

(−1)n

n2 − 1
cos(nx),

converging to x sin(x) for −π ≤ x ≤ π. The function is continuous on
[−π, π], and f ′(x) is piecewise continuous. Further, f(−π) = f(π) and
f ′′(x) exists on (−π, π). We can differentiate the Fourier series term by
term to obtain, for −π < x < π,

f ′(x) = sin(x) + x cos(x)

=
1

22
cos(x) + 2

∞∑
n=2

n(−1)n

n2 − 1
cos(nx).

5. Let the Fourier coefficients of f on [−L,L]be an and bn, as usual. Let the
Fourier coefficients of f ′(x) be An, Bn. Notice that

A0 =
2

L

∫ L

−L
f ′(ξ) dξ = f(L)− f(L) = 0

because f(L) = f(−L).

Now we will develop some inequalities aimed at showing uniform conver-
gence of the Fourier series of f(x) on [−L,L].

Begin with an integration by parts:

An =
1

L

∫ L

−L
f ′(ξ) cos(nπξ/L) dξ

=
1

L
[f(x) cos(nπx/L)]

L
−L +

n

π

1

L

∫ L

−L
f(ξ) sin(nπξ/L) dξ.
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Now,
f(L) cos(nπ)− f(−L) cos(−nπ) = 0

for integer n, again because f(L) = f(L). Then

An =
nπ

L

1

L

∫ L

−L
f(ξ) cos(nπξ/L) dξ =

nπ

L
an

for n = 1, 2, · · · . A similar integration by parts gives us

Bn = −nπ
L
an.

Observe that

0 ≤
(
|An| −

1

n

)2

= A2
n −

2

n
|An|+

1

n2

and, similarly,

0 ≤ B2
n −

2

n
|Bn|+

1

n2
.

Add these two inequalities to get

2

n
(|An|+ |Bn|) ≤ A2

n +B2
n +

2

n2
.

Multiply this by 1/2 to obtain

1

n
(|An|+ |Bn|) ≤

1

2
(A2

n +B2
n) +

1

n2
.

On the left, insert

|An| =
nπ|an|
L

and |Bn| =
nπ|an|
L

to obtain

|an|+ |bn| ≤
L

2π
(A2

n +B2
n) +

L

π

1

n2
.

Now,
∞∑
n=1

A2
n and

∞∑
n+1

B2
n

both converge, by Bessel’s inequality. Therefore, by the comparison test
for nonnegative series, we conclude that

∞∑
n=1

(|an|+ |bn|)

converges. Finally, observe that, on [−L,L],

|an cos(nπx/L)|+ bn sin(nπx/L)| ≤ |an|+ |bn|.

By what is often known as the Weierstrass M - test (in this case with

Mn = |an|+ |bn|

the Fourier series of f(x) on [−L,L] converges uniformly on this interval.
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17.4 Properties of Fourier Coefficients

1. The argument is like that for sine series, but is notationally a little messier
because of the additional constant term in the cosine expansion. Let

SN =
1

2
A0 +

N∑
n=1

An cos(nπx/L).

Now

0 ≤
∫ L

0

(g(x)− SN (x))
2
dx

=

∫ L

0

(
(g(x))2 dx− 2g(x)SN (x) + S2

N (x)
)
dx

=

∫ L

0

(g(x))2 dx− 2

∫ L

0

g(x)

(
1

2
A0 +

N∑
n=1

An cos(nπx/L)

)
dx

+

∫ L

0

(
1

2
A0 +

N∑
n=1

An cos(nπx/2)

)(
1

2
A0 +

N∑
n=1

An cos(nπx/L)

)
dx

=

∫ L

0

(g(x))2 dx−
∫ L

0

A0g(x) dx

− 2

N∑
n=1

∫ L

0

g(x)An cos(nπx/L) dx

+

∫ L

0

(
1

4
A2

0 +
N∑
n=1

N∑
m=1

AnAm cos(nπx/L) cos(mπx/L) +
N∑
n=1

A0An cos(nπx/L)

)
dx

=

∫ L

0

(g(x))2 dx− L

2
A2

0 − L
N∑
n=1

A2
n

+
L

4
A2

0 +
N∑
n=1

L

2
A2
n

=

∫ L

0

(g(x))2 − L

4
A2

0 −
L

2

N∑
n=1

A2
n.

Here we have used the fact that∫ L

0

cos(nπx/L) dx = 0

and that ∫ L

0

cos(nπx/L) cos(mπx/L) dx =

{
L/2 if n = m,

0 if n 6= m,
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Upon rearranging terms in the first and last lines (which are connected by
an inequality), we have

1

2
A2

0 +
N∑
n=1

A2
n ≤

2

L

∫ L

0

(g(x))2 dx.

Problems 3 and 4 are obtained by adapting the argument of the text to the
notation cosine expansions on [0, L] and Fourier series on [−L,L], similar to the
solution of Problem 1.

17.5 Phase Angle Form

1.

(αf + βg)(x+ p) = αf(x+ p) + βg(x+ p)

= αf(x) + βg(x) = (αf + βg)(x).

3.

f ′(x+ p) = lim
h→0

f(x+ p+ h)− f(x+ p)

h

= lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

5. The Fourier series is

1

2
+

2

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πx),

with phase angle form

1 +
2

π

∞∑
n=1

1

2n− 1
cos
(

(2n− 1)πx− π

2

)
.

Points of the amplitude spectrum are

(0, 1), (nπ, 1/((2n− 1)π)) for n = 1, 2, · · · .

7. The Fourier series is

19

8
+
∞∑
n=1

2

n2π2
αn cos(nπx/2) + βn sin(nπx/2),

where
αn = nπ sin(3nπ/2) + cos(3nπ/2)
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and

βn = sin(3nπ/2)− nπ

2
− nπ cos(3nπ/2).

The phase angle form is

19

8
+

1

π2

∞∑
n=1

dn cos
(nπx

2
+ δN

)
,

where

dn =
√

8 + 5n2π2 − 12nπ sin(3nπ/2) + 4(n2π2 − 2) cos(3nπ/2)

and

δn = arctan

(
nπ/2 + nπ cos(3nπ/2)− sin(3nπ/2)

nπ sin(3nπ/2) + cos(3nπ/2)− 1

)
.

9. We can write

f(x) =

{
x for 0 ≤ x < 1,

x− 2 for 1 < x < 2

and f(x+ 2)f(x), so f has period 2. The Fourier series is

2

π

∞∑
n=1

(−1)n+1

n
sin(nπx).

The phase angle form is

2

π

∞∑
n=1

1

n
cos
(
nπx+ (−1)n+1π

2

)
.

11. We can write

f(x) =


1 for 0 ≤ x < 1,

2 for 1 < x < 3,

1 for 3 < x < 4

with f(x+ 4) = f(x). The Fourier series is

3

2
+
∞∑
n=1

(−1)n

2n− 1
cos((2n− 1)πx/2).

The phase angle form is

3

2
+

2

π

∞∑
n=1

cos
(

(2n− 1)
πx

2
+
π

2
(1− (−1)n)

)
.
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17.6 Complex Fourier Series

1. Compute

d0 =
1

3

∫ 3

0

2t dt = 3

and

dn =
1

3

∫ 3

0

2xe2nπix/3 dx =
3

nπ
i.

The complex Fourier series of f(x) is

3 +
3i

π

∞∑
n=−∞,n6=0

1/n

e

2nπix/3

converging to {
3 for x = 0 or x = 3,

2x for 0 < x < 3.

Points of the frequency spectrum are

(0, 3),

(
2nπ

3
,

3

nπ

)
,

in which n is a nonzero integer.

3. The complex Fourier series of the function is

3

4
− 1

2π

∞∑
n=−∞,n6=0

1

n
(sin(nπ/2) + (cos(nπ/2)− 1)i)enπix/2,

converging to 
1/2 for x = 0, 1 or 4,

0 for 0 < x < 1,

1 for 1 < x < 4.

Points of the frequency spectrum are

(0, 3/4),

(
nπ

2
,

1

2nπ

√
sin2(nπ/2) + (cos(nπ/2)− 1)2

)
.

5. The complex Fourier series is

1

2
+

3i

π

∑
n=−∞,n6=0

e(n−1)πix/2,

converging to 
1/2 for x = 0, 2, 4,

−1 for 0 < x < 2,

2 for 2 < x < 4.
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Points of the frequency spectrum are

(0, 1/2),

(
nπ

2
,

3

(2n− 1)π

)
.

7. The complex Fourier series is

1

2
− 2

π2

∞∑
n=−∞,n6=0

1

(2n− 1)2
e(2n−1)πix,

converging to f(x) for 0 ≤ x ≤ 2. Points of the frequency spectrum are

(0, 1/2),

(
nπ,

2

π2

1

(2n− 1)2

)
.

17.7 Filtering of Signals

1. The complex Fourier coefficients of f are d0 = 0 and, for n 6= 0,

dn =
1

4

[∫ 0

−2

−e−nπit/2 dt+

∫ 2

0

e−nπit/2 dt

]
=

i

nπ
((−1)n − 1).

The complex Fourier series is

∞∑
n=−∞,n6=0

i

nπ
((−1)n − 1)enπit/2.

After some routine calculation using Euler’s formula, we obtain the series

4

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πt/2).

The Nth partial sum is

SN (t) =
4

π

N∑
n=1

1

2n− 1
sin((2n− 1)πt/2).

The Nth Cesáro sum is formed by inserting factors 1− |n|/N :

σN (t) =
4

π

N∑
n=1

(
1− 2n− 1

N

)
1

2n− 1
sin((2n− 1)πt/2).

3. We obtain

SN (t) =

N∑
n=1

2

nπ
(cos(nπ/2)− (−1)n) sin(nπt)

and

σN (t) =
N∑
n=1

(
1− n

N

) 2

nπ
(cos(nπ/2)− (−1)n) sin(nπt).
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5. We find that

SN (t) =
17

4
+

N∑
n=1

[
1− (−1)n

n2π2
cos(nπt) +

5− 6(−1)n

nπ
sin(nπt)

]
and

σN (t) =
17

4
+

N∑
n=1

(
1− n

N

)[1− (−1)n

n2π2
cos(nπt) +

5− 6(−1)n

nπ
sin(nπt)

]

7. The partial sums are

SN (t) = 1 +
N∑
n=1

2

nπ
(1− 3(−1)n) sin(nπt/2),

σN (t) = 1 +
N∑
n=1

2

nπ

(
1− n

N

)
(1− 3(−1)n) sin(nπt/2),

HN (t) = 1 +
2

nπ
(0.54 + 0.46 cos(nπ/N))(1− 3(−1)n) sin(nπt/2),

GN (t) = 1 +
N∑
n=1

2

nπ
e−n

2π2/N2

(1− 3(−1)n) sin(nπt/2).
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Chapter 18

Fourier Transforms

18.1 The Fourier Transform

1.

f̂(ω) =

∫ 0

−1

e−iωx dx+

∫ 1

0

e−iωx dx =
2i

ω
(cos(ω)− 1).

The amplitude spectrum is the graph of

|f̂(ω)| =
∣∣∣ 2
ω

(cos(ω)− 1)
∣∣∣.

3. Write
f(x) = 5[H(x+ 4− 7)−H(x+ 4 + 7)]

to obtain

f̂(ω) = 5e−7iω

(
2 sin(4ω)

ω

)
=

10

ω
e−7iω sin(4ω).

The amplitude spectrum is a graph of

|f̂(ω)| =
∣∣∣10

ω
sin(4ω)

∣∣∣.
5.

f̂(ω) =

∫ ∞
k

e−x/4e−iωx dx

=
e−(iω+1/4)x

−(iω + 1/4)

∣∣∣∞
k

=
4e−(iω+1/4)k

1 + 4iω
.

The amplitude spectrum is a graph of

|f̂(ω)| = 4e−k/4√
1 + 16ω2

.

251
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252 CHAPTER 18. FOURIER TRANSFORMS

7.
f̂(ω) = πe−|ω|.

The amplitude spectrum is a graph of this function, which is nonnegative
and hence equals its own magnitude.

9.

f̂(ω) =
24

16 + ω2
e2iω.

The amplitude spectrum is a graph of

|f̂(ω)| = 24

16 + ω2
.

11.

f(x) = 18

√
2

π
e−4ixe−8x2

13. Write

f̂(ω) =
e2(ω−3)i

5 + (ω − 3)i

to obtain

f(x) = e3ixf̂−1

[
e2iω

5 + iω

]
= e3ixH(x+ 2)e−5(x+2) = H(x+ 2)e−(10+(5−3i)x).

15. Write

f̂(ω) =
1 + iω

(3 + iω)(2 + iω)
=

2

3 + iω
− 2

2 + iω
.

Then
f(x) = (2e−3x − e−2x)H(x).

17.

f̂−1

(
1

(1 + iω)2

)
= H(x)e−x ∗H(x)e−x

=

∫ ∞
−∞

H(ξ)e−ξH(x− ξ)e−(x−ξ) dξ

= H(x)e−x
∫ x

0

dξ = H(x)xe−x.

19. Compute∫ ∞
−∞
|f(x)|2 dx =

1

2π

∫ ∞
−∞

f̂(ω)f̂(ω) dω =
1

2π

∫ ∞
−∞
|f̂(ω)|2 dω.
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21. Begin with

F
[

1

2
(H(x+ 3)−H(x− 3))

]
(ω) =

1

2

∫ 3

−3

e−iωx dx

=
e3iω − e−3iω

2iω
.

Use the symmetry property of the transform to get

F
[

sin(3x)

x

]
(ω) = π[H(−ω + 3)−H(−ω − 3)]

= π[H(ω + 3)−H(ω − 3)].

Now use Parseval’s identity to write∫ ∞
−∞

(
sin(3x)

x

)2

dx =
1

2π

∫ 3

−3

π2 dω = 3π.

23.

f̂win(ω) =

∫ 5

−5

x2e−iωx dx

=
2

ω3
(25ω2 sin(5ω) + 10ω cos(5ω)− 2 sin(5ω)).

Because w(x) = 1 and the support of g is [−5, 5], then tC = 0. For the
RMS bandwidth of the window function, we have

wRMS = 2

(∫ 5

−5
x2 dx∫ 5

−5
dx

)1/2

=
10√

3
.

25. Compute

f̂win(ω) =

∫ 1

0

e−xe−iωx dx =
1

1 + iω
(1− e−4(1+iω))

=
1

1 + ω2
(1− e−4(cos(4ω)− i sin(4ω))(1− iω)

=
1− e−4 cos(4ω) + e−4 sin(4ω)

1 + ω2

+ i

[
e−4 sin(4ω) + (e−4 cos(4ω)− 1)ω

1 + ω2

]
.

We also have

tC =

∫ 4

0
x dx∫ 4

0
dx

= 2

and

wRMS = 2

(∫ 4

0
(x− 2)2 dx∫ 4

0
dx

)1/2

=
4√
3
.
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27.

f̂win(ω) =

∫ 2

−2

(x+ 2)2e−iωx dx

=
4

ω3
((4ω2 − 1) sin(2ω) + 2ω cos(2ω))

+
8i

ω2
(2ω cos(2ω)− sin(2ω)).

With w(x) = 1 and support [−2, 2], we have tC = 0. Finally,

wRMS = 2

(∫ 2

−2
x2 dx∫ 2

−2
dx

)1/2

=
4√
3
.

18.2 Fourier Sine and Cosine Transforms

In these problems the integrations are straightforward and details are omitted.

1.

f̂C(ω) =

∫ ∞
0

e−x cos(ωx) dx =
1

1 + ω2
,

f̂S(ω) =

∫ ∞
0

e−x sin(ωx) dx =
ω

1 + ω2

3.

f̂C(ω) =
1

2

[
sin(K(ω + 1))

ω + 1
+

sin(K(ω − 1))

ω − 1

]
for ω 6= ±1,

f̂C(1) = f̂C(−1) =
K

2
+

1

2
sin(2K)

f̂S(ω) =
ω

ω2 − 1
− 1

2

[
cos((ω + 1)K)

ω + 1
+

cos((ω − 1)K)

ω − 1

]
for ω 6= ±1,

f̂S(1) =
1

4
(1− cos(2K)), f̂S(−1) = −1

4
(1− cos(2K))

5.

f̂C(ω) =
1

2

[
1

1 + (ω + 1)2
+

1

1 + (ω − 1)2

]
,

f̂S(ω) =
1

2

[
ω + 1

1 + (ω + 1)2
+

ω − 1

1 + (ω − 1)2

]
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7. Suppose, for each positive number L, f (4)(x) is piecewise continuous on
[0, L], f (3)(x) is continuous, and, as x → ∞, f (j)(x) → 0 for j = 1, 2, 3.
Then we can integrate by parts four times to obtain

FS [f (4)(x)](ω) =

∫ ∞
0

f (4)(x) sin(ωx) dx

=
[
f (3)(x) sin(ωx)− ωf ′′(x) cos(ωx)− ω2f ′(x) sin(ωx) + ω3f(x) cos(ωx)

]∞
0

+ ω4

∫ ∞
0

f(x) sin(ωx) dx

= ω4FS(ω)− ω3f(0) + ωf ′′(0).
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Chapter 19

Complex Numbers and
Functions

19.1 Geometry and Arithmetic of Complex Num-
bers

1.
(3− 4i)(6 + 2i) = (18 + 8) + (−24 + 6)i = 26− 18i

3.
2 + i

4− 7i
=

2 + i

4− 7i

4 + 7i

4 + 7i
=

1 + 18i

65

5.
(17− 6i)(−3− 12i) = (17− 6i)(−3 + 12i) = 4 + 228i

7.
i3 − 4i2 + 2 = −i+ 4 + 2 = 6− i

9. (
−6 + 2i

1− 8i

)2

=

(
(−6 + 2i)(1 + 8i)

(1− 8i)(1 + 8i)

)2

=
(−22− 46i)2

652
=

1

4225
(−1632 + 2024i)

In each of Problems 11–16, n denotes an arbitrary integer.

11.
|3i| = 3, arg(3i) =

π

2
+ 2nπ

13.
| − 3 + 2i| =

√
13, arg(−3 + 2i) = − arctan(2/3) + (2n+ 1)π

257

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



258 CHAPTER 19. COMPLEX NUMBERS AND FUNCTIONS

15.
| − 4| = 4, arg(−4) = (2n+ 1)π

17. Because | − 2 + 2i| = 2
√

2 and 3π/34 is an argument, the polar form of
−2 + 2i is

−2 + 2i = 2
√

2e3iπ/4.

Here we did not add the customary 2nπ to the argument because, first,
we need only one argument to write the polar form, and second, e2nπi = 1
for any integer n.

19. |5− 2i| =
√

29 and an argument of 5− 2i is − arctan(2/5), so

5− 2i =
√

29e− arctan(2/5)i.

21.
8 + i =

√
65earctan(1/8)i.

23. Because i2 = −1, we have

i4n = (i2)2n = ((−1)2)n = 1,

i4n+1 = i4ni = i,

i4n+2 = i4ni2 = i2 = −1,

i4n+3 = i4ni3 = i2i = −i.

25. Suppose first that z, w, u form vertices of a triangle, labeled in clockwise
order around the triangle. The sides of the triangle are vectors represented
by the complex numbers w−z, u−w, and z−u. This triangle is equilateral
if and only if the sides have the same length, or

|w − z| = |u− w| = |z − u|

and each of the vector sides can be rotated by θ = 2π/3 radians clockwise
to coincide with another side. This occurs exactly when

u− w = (w − z)e−2πi/3 and z − u = (u− w)e−2πi/3.

Dividing these equations, we have

u− w
z − u

=
w − z
u− w

.

Then
(u− w)(u− w) = (w − z)(z − u).

Then
u2 − 2uw + w2 = wz + zu− uw − z2.

Then
z2 + w2 + u2 = zw + zu+ wu.
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27. Suppose first that |z| = 1. Then

|z| =
√
x2 + (−y)2 =

√
x2 + y2 = |z| = 1

also. Then ∣∣∣ z − w
1− zw

∣∣∣ =
∣∣∣ z − w
zz − zw

∣∣∣
=
|z − w|
|z||z − w|

= 1.

If |w| = 1, then ∣∣∣ z − w
1− zw

∣∣∣ =
∣∣∣ z − w
ww − zw

∣∣∣
=

1

|w|

∣∣∣z − w
z − w

∣∣∣ = 1

because
|z − w| = |w − z| = |w − z|.

29. M consists of all x+ iy with y < 7. This is the half-plane lying below the
horizontal line y = 7. The boundary points are all points x + 7i on the
“edge” of M . M is open because it does no contain any of its boundary
points (all points of M are interior points).

31. U consists of all points in the vertical strip between the vertical lines x = 1
and x = 3, including points on the line x = 3, but none of the points on
the line x = 1. The boundary points of U are the points 1 + iy and 3 + iy
on these lines. U is not closed because there are boundary points of U
that do not belong to U . U is not open because U contains some of its
boundary points (so not every point of U is an interior point).

33. W consists of all x+iy with x > y2. These are the points “enclosed” by the
parabola x = y2, which opens to the right from the origin. The boundary
points are the points on the parabola, which are the points x + i

√
x for

x ≥ 0. W does not contain any of its boundary points, and is open. W is
not closed.

19.2 Complex Functions

1.
f(z) = z − i = x+ iy − i = x+ (y − 1)i

so u(x, y) = x and v(x, y) = y − 1. The Cauchy-Riemann equations for
this function are

∂u

∂x
= 1 =

∂v

∂y
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and
∂u

∂y
= 0 = −∂v

∂x
.

Because u and v are continuous with continuous first partial derivatives,
and the Cauchy-Riemann equations are satisfied for all z, f(z) is differen-
tiable for all z.

3. f(z) = |x+ iy| =
√
x2 + y2, so

u(x, y) =
√
x2 + y2 and v(x, y) = 0.

If z 6= 0, then
∂u

∂x
=

x√
x2 + y2

,
∂u

∂y
=

y√
x2 + y2

and
∂v

∂x
=
∂v

∂y
= 0.

The Cauchy-Riemann equations are not satisfied at any nonzero z. To
check what happens at z = 0, compute

∂u

∂x
(0, 0) = lim

h→0

u(h, 0)− u(0, 0)

h

= lim
h→0

√
h2

h

= lim
h→0

|h|
h
.

This limit does not exist, because

|h|
h

=

{
1 if h > 0,

−1 if h < 0.

Similarly, (∂u/∂y)(0, 0) does not exist. Therefore the Cauchy-Riemann
equations are not satisfied at any point, including the origin, and f(z) is
not differential for any z.

5. f(z) = i|z|2 = (x2 + y2)i, so

u(x, y) = 0 and v(x, y) = x2 + y2.

Then
∂u

∂x
=
∂u

∂y
= 0

and
∂v

∂x
= 2x,

∂v

∂y
= 2y.
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The Cauchy-Riemann equations are satisfied only at z = 0, so f(z) is
certainly not differentiable at any nonzero z. To check at z = 0, fall back
on the definition of the derivative:

lim
h→0

z(h)− f(0)

h
= lim
h→0

i|h|2

h
= lim
h→0

ihh

h
= lim
h→0

ih = 0.

Therefore f ′(0) = 0. 0 is the only point at which this function is differen-
tiable.

7. First,

f(z) =
x+ iy

x
= 1 +

y

x
i

for x 6= 0. This function is defined for all z except for points on the
imaginary axis. For x 6= 0, we can let

u(x, y) = 1, v(x, y) =
y

x
.

Now
∂u

∂x
=
∂u

∂y
= 0

and
∂v

∂x
= − y

x2
,
∂v

∂y
=

1

x
.

These are not satisfied at any z at which the function is defined. Therefore
f(z) is not differentiable at any point at which it is defined.

9. First,
f(z) = (z)2 = (x− iy)2 = x2 − y2 − 2xyi,

so let
u(x, y) = x2 − y2 and v(x, y) = −2xy.

Then
∂u

∂x
= 2x but

∂v

∂y
= −2x,

while
∂v

∂x
= −2y =

∂u

∂y
.

The Cauchy-Riemann equations hold only a z = 0, so this is the only
point at which f(z) might have a derivative. To check this, look at

lim
h→0

f(h)− f(0)

h
= lim
h→0

(h)2

h
= lim
h→0

(
h

h

)
h = 0

because h/h has magnitude 1 and h→ 0 if h→ 0.

Therefore f ′(0) = 0, and 0 is the only point at which the function has a
derivative.
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11. For z 6= 0, write

f(z) = −4z +
1

z
= −4x− 4iy +

1

x+ iy

= −4x− 4yi+
x− iy
x2 + y2

for (x, y) 6= (0, 0). Let

u(x, y) = −4x+
x

x2 + y2
and v(x, y) =

(
−4y − y

x2 + y2

)
.

Then
∂u

∂x
= −4 +

y2 − x2

(x2 + y2)2
,
∂u

∂y
=

−2xy

(x2 + y2)2
,

and
∂v

∂x
=

2xy

(x2 + y2)2
,
∂v

∂y
= −4 +

y2 − x2

(x2 + y2)2
.

The Cauchy-Riemann equations are satisfied at each nonzero z. Because
u, v and the partial derivatives are continuous for (x, y) 6= (0, 0), f(z) is
differentiable for all nonzero z.

13. Let zn = xn + iyn and z0 = x0 + iy0. Write f(z) = u(x, y) + iv(x, y).
Because u and v are continuous at (x0, y0), then

f(zn) = u(xn, yn) + iv(xn, yn)→ u(x0, y0) + iv(x0, y0) = f(z0).

19.3 The Exponential and Trigonometric Func-
tions

1.
ei = e0+i = e0(cos(1) + i sin(1)) = cos(1) + i sin(1)

3. Use the fact that

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y)

to get
cos(3 + 2i) = cos(3) cosh(2)− i sin(3) sinh(2).

5.
e5+2i = e3e2i = e3 cos(2) + ie3 sin(2).

7.

sin2(1 + i) =
1

2
(1− cos(2(1 + i)))

=
1

2
[1− cos(2) cosh(2) + i sin(2) sinh(2)].
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9.
eiπ/2 = cos(π/2) + i sin(π/2) = i

11. Begin with

ez
2

= ex
2−y2+2ixy

= ex
2−y2 [cos(2xy) + i sin(2xy)].

Then

u(x, y) = ex
2−y2 cos(2xy) and v(x, y) = ex

2−y2 sin(2xy).

Now compute

∂u

∂x
= ex

2−y2 [2x cos(2xy)− 2y sin(2xy)],

∂u

∂y
= ex

2−y2 [−2y cos(2xy)− 2x sin(2xy)],

∂v

∂x
= ex

2−y2 [2x sin(2xy) + 2y sin(2xy)],

∂v

∂y
= ex

2−y2 [−2y sin(2x) + 2x cos(2xy)].

Then u and v satisfy the Cauchy-Riemann equations for all (x, y).

13.

f(z) = zez = (x+ iy)ex(cos(y) + i sin(y))

= xex cos(y)− yex sin(y) + (yex cos(y) + xex sin(y))i = u(x, y) + iv(x, y).

Then
∂u

∂x
= ex[cos(y) + x cos(y)− y sin(y)] =

∂v

∂y

and
∂u

∂y
= ex[−x sin(y)− sin(y)− y cos(y)] = −∂v

∂x
.

The Cauchy-Riemann equations are satisfied for all z.

15. Suppose ez = 2i. With z = x+ iy, then

ex cos(y) + iex sin(y) = 2i.

Then
ex cos(y) = 0 and ex sin(y) = 2.

Because ex 6= 0, cos(y) = 0, so

y =
(2n+ 1)π

2
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in which n can be any integer. Now we have

ex sin

(
2n+ 1

2
π

)
= 2.

Now ex > 0 for real x, so sin((2n+ 1)π/2) > 0. But

sin

(
2n+ 1

2
π

)
=

{
1 if n is even,

−1 if n is odd.

Therefore n must be even, say n = 2m. Now we have

y =
4m+ 1

2
π.

Now we are left with ex = 2, so x = ln(2). All the solutions of ez = 2i are

ln(2) +
4m+ 1

2
π

with m any integer.

17. Use the polar form of the given equation. If z = reiθ, the equation is

ez = ereiθ = −2.

Because θ is real, |eiθ| = 1, so

|ez| = er = | − 2| = 2.

Then r = ln(2). Next, we must also have

eiθ = −1 = cos(θ) + i sin(θ).

Then sin(θ) = 0, so θ = nπ, in which (so far) n can be any integer. But
cos(θ) = −1 means that n must be odd, so

θ = (2m+ 1)π

in which m can be an y integer. Then

z = ln(2) + (2m+ 1)π,

with m any integer, are all the solutions for z.

19.4 The Complex Logarithm

1. In polar form,
z = −4i = 4e3nπi/2

so
log(−4i) = ln(4) +

(π
2

+ 2nπ
)
i.
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3. −5 = 5eπi, so
log(−5) = ln(5) + (2n+ 1)πi.

5. −9 + 2i =
√

85e(arctan(−2/9)+π)i, so

log(−9 + 2i) =
1

2
ln(85) + (− arctan(2/9) + (2n+ 1)π)i.

7. Note that log(zw), log(z) and log(w) all have infinitely many different
values, so we cannot expect to write the complex logarithm of the product
as the sum of the logarithms of the factors. What we can show is that
every value of log(zw) is the sum of a value of log(z) and a value of log(w).
Suppose that z and w are nonzero. Let θz be any argument of z, and θw
any argument of w. Then

z = |z|e(θz+2nπ)i and w = |w|e(θw+2mπ)i.

Then
zw = |z||w|e(θz+θw+2kπ)i,

while

log(z) + log(w) = ln(|z|) + ln(|w|) + (θz + θw + 2(n+m)π)i.

This means that for any choice of n and m, we can choose k = n + m to
obtain a value of log(zw) that is equal to log(z) + log(w).

19.5 Powers

In these problems, n denotes an arbitrary integer.

1.

i1+i = e(1+i) log(i) = e(1+i)(π/2+2nπ)i

= e−(π/2+2nπ)
[
cos
(π

2
+ 2nπ

)
+ i sin

(π
2

+ 2nπ
)]

= ie−(π/2+2nπ).

3.

ii = ei log(i) = ei(i(π/2+2nπ))

= e−π/2+2nπ.

This is consistent with Problem 1, because i1+i = iii.

5.

(−1 + i)−3i = e−3i log(−1+i)

= e−3i ln(
√

2)+i(3π/4+2nπ)

= e9π/4+6nπ[cos(3 ln(
√

2)) + i sin(3 ln(
√

2))].
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7.

i1/4 =
(
ei(π/2+2nπ)

)1/4

= ei(π/8+nπ/2),

the the four fourth roots obtained for n = 0, 1, 2, 3. Other choices of n
repeat these roots.

9.

(−4)2−i = e(2−i) log(−4) = e(2−i)(ln(4)+i(π+2nπ))

= e2 ln(4)+π+2nπ[cos(ln(4))− i sin(ln(4))].

11.

(−16)1/4 =
(

16ei(π+2nπ)
)1/4

= 2ei(π/4+nπ/2)

= 2
[
cos
(π

4
+
nπ

2

)
+ i sin

(π
4

+
nπ

2

)]
.

We obtain the four fourth roots by taking n = 0, 1, 2, 3. These fourth
roots are √

2(1 + i),
√

2(−1 + i),
√

2(−1− i),
√

2(1− i).

13. These are the sixth roots of unity:

11/6 =
(
e2nπi

)1/6
= enπi/3

= cos(nπ/3) + i sin(nπ/3).

These sixth roots are obtained for n = 0, 1, 2, 3, 4, 5, and are

1,
1

2
(1 +

√
3i),

1

2
(−1 +

√
3i),−1,

1

2
(−1−

√
3i),

1

2
(1−

√
3i).

15. Let ω be any nth root of 1 different from 1. The numbers ωj , for j =
0, 1, · · · , n − 1 are distinct, hence are all of the nth roots of 1. It is
therefore enough to show that

n−1∑
j=0

ωj = 0.

But this is a finite geometric series, whose sum is known:

n−1∑
j=0

ωj =
1− ωn

1− ω
= 0

because ωn = 1.
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The conclusion can also be proved as follows. Let ω1, · · · , ωn be the nth
roots of unity. Let S =

∑n
j=1 ωj .

Now, one of the nth roots of unity is 1, but the other n − 1 roots are
different from 1. Pick one root that does not equal 1, say, possibly by
relabeling, ω1 6= 1. The numbers

ω1ω1, ω1ω2, · · · , ω1ωn

are also nth roots of unity and are distinct, so this list includes all the nth
roots of unity. The sum of these numbers is therefore S:

S =
n∑
j=1

ω1ωj = ω1S.

But then
S(1− ω1) = 0.

Because ω1 6= 1, then S = 0.
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Chapter 20

Complex Integration

20.1 The Integral of a Complex Function

1. In this problem f(z) = 1 is differentiable for all z and we can write an
antiderivative F (z) = z. The curve has initial point γ(1) = 1 − i and
terminal point γ(3) = 9− 3i, so

∫
γ

f(x) dz = F (9− 3i)− F (1− i) = 9− 3i− (1− i) = 8− 2i.

We can also evaluate the integral by using the parametric equations of the
curve. On γ, z = γ(t) = t2 − it, so dz = 2t− i and

∫
γ

f(z) dz =

∫
γ

dz

=

∫ 3

1

(2t− i) dt

= t2 − it
∣∣∣3
1

= (9− 3i)− (1− i)

= 8− 2i.

3. f(z) = Re(z) is not differentiable, so there is no antiderivative. There are
many ways to parametrize the curve. One is by setting

γ(t) = 1 + (1 + i)t for 0 ≤ t ≤ 1.

269
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270 CHAPTER 20. COMPLEX INTEGRATION

On γ, f(z) = 1 + t and dz = (1 + i) dt, so∫
γ

f(z) dz =

∫ 1

0

(1 + t)(1 + i) dt

=

∫ 1

0

(1 + i+ (1 + i)t) dt

= (1 + i)t+
1 + i

2
t2
∣∣∣1
0

=
3

2
(1 + i).

5. F (z) = (z − 1)2/2 is an antiderivative of f(z), which is differentiable for
all z, so ∫

γ

f(z) dz = F (1− 4i)− F (2i) = −13

2
+ 2i.

7. f(z) is differentiable for all z and has antiderivative F (z) = − cos(2z)/2,
so ∫

γ

f(z) dz = F (−4i)− F (−i)

= −1

2
(cos(−8i)− cos(−2i)) = −1

2
[cosh(8)− cosh(2)].

9. f(z) is differentiable for all z and has antiderivative F (z) = −i sin(z), so∫
γ

f(z) dz = F (2 + i)− F (0) = −i sin(2 + i)

= −i[sin(2) cosh(1) + i cos(2) sinh(1)]

= − cos(2) sinh(1)− i sin(2) cosh(1).

11. Use the antiderivative F (z) = (z − i)4/4 to get∫
γ

f(z) dz = F (2− 4i)− F (0) = 10 + 210i.

13. f(z) has no antiderivative because this function is not differentiable. Parametrize
the curve by γ(t) = (−4 + 3i)t for 0 ≤ t ≤ 1. Then∫

γ

iz dz =

∫ 1

0

−i(4t− 3ti)(−4 + 3i) dt

= (−4 + 3i)

(
3

2
− 2i

)
=

25

2
i.
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15. f(z) = |z|2 has no antiderivative, so write γ(t) = (1 + i)t− i for 0 ≤ t ≤ 1
to get ∫

γ

|z|2 dz =

∫ 1

0

(t2 + (t− 1)2)(1 + i) dt =
2

3
(1 + i).

17. The length of γ is
√

5. Now we need a number M such that∣∣∣ 1

1 + z

∣∣∣ ≤M on γ.

Notice that the point on γ closest to z = −1 is 2 + i, so for z on the curve,

|z + i| = |z − (−1)| ≥ |2 + i+ i| =
√

10.

Then ∣∣∣ 1

1 + z

∣∣∣ =
1

|1 + z|
≤ 1√

10
.

We can therefore use M = 1/
√

10 to get the bound∣∣∣ ∫
γ

1

1 + z
dz
∣∣∣ ≤ √5√

10
=

1√
2
.

20.2 Cauchy’s Theorem

1. sin(z) is differentiable for all z, hence on an open set containing the curve
and all points enclosed by the curve. By Cauchy’s theorem,∮

γ

sin(z) dz = 0.

3. γ encloses 2i, at which f(z) is not defined. Parametrize

γ(t) = 2i+ 2eit for 0 ≤ t ≤ 2π.

Then ∮
γ

1

(z − 2i)3
dt =

∫ 2π

0

1

(2eit)3
2ieit dt

=
i

4

∫ 2π

0

e−2it dt = 0.

This integral happens to be zero, but we could not conclude this from
Cauchy’s theorem, which does not apply here.

5. f(z) = z is not differentiable. Write γ(t) = eit for 0 ≤ t ≤ 2π. Then∮
γ

z dz =

∫ 2π

0

e−itieit dt = 2πi.
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7. Because f(z) = zez is differentiable on the curve and throughout the
region it encloses, then by Cauchy’s theorem,∮

γ

zez dz = 0.

9. f(z) = |z|2 is not differentiable at any point other than 0, Cauchy’s theo-
rem does not apply. Write γ(t) = 7eit for 0 ≤ t ≤ 2π to obtain∮

γ

|z|2 dz =

∫ 2π

0

49(7ieit) dt = 0.

11. f(z) = Re(z) is not differentiable, so write γ(t) = 2eit for 0 ≤ t ≤ 2π.
Then ∮

γ

Re(z) dz =

∫ 2π

0

2 cos(t)(2ieit) dt

=

∫ 2π

0

[4i cos2(t)− 4 cos(t) sin(t)] dt = 4πi.

20.3 Consequences of Cauchy’s Theorem

1. Because 2i is the center of the circle γ, we can apply Cauchy’s integral
formula with f(z) = z4 to obtain∮

γ

z4

z − 2i
dz = 2πif(2i) = 2πi(2i)4 = 32πi.

3. Use Cauchy’s integral formula, with f(z) = z2 − 4z + i, to obtain∮
γ

z2 − 4z + i

z − 1 + 2i
dz = 2πif(1− 2i)

= 2πi[(1− 2i)2 − 4(1− 2i) + i] = 2πi(−8 + 7i)

= −14π − 16πi.

5. We can use the Cauchy integral formula for derivatives with n = 1 and
f(z) = iez:∮

γ

iez

(z − 2 + i)2
dz = 2πif ′(2− i)

= 2πi(ie2−i) = −2πe2[cos(1)− i sin(1)].

7. With f(z) = z sin(3z) and n = 2, Cauchy’s formula for derivatives gives
us ∮

γ

z sin(3z)

(z + 4)3
dz =

2πi

2
f ′′(−4)

= πi[6 cos(12)− 36 sin(12)].
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9. ∮
γ

−(2 + i) sin(z4)

(z + 4)2
dz = −2πi(2 + i)

d

dz
(sin(z4))

∣∣∣
z=−4

= 2πi(1− 2i)
[
4z3 cos(z4)

]
z=−4

= −512π(1− 2i) cos(256).

11. Parametrize γ(t) = 3− t+ (1− 6t)i for 0 ≤ t ≤ 1. Then∫
γ

Re(z + 4) dz =

∫ 1

0

(7− t)(−1− 6i) dt

= (−1− 6i)
13

2
= −13

2
− 39i.

13. First evaluate ∮
γ

ez

z
dz

by Cauchy’s integral formula to obtain∫
γ

ez

z
dz = 2πiez

∣∣∣
z=0

= 2πi.

Now evaluate this integral by parametrizing γ(t) = eit for 0 ≤ t ≤ 2π:∮
γ

ez

z
dz =

∫ 2π

0

ecos(t)+i sin(t)

eit
ieit dt

= i

∫ 2π

0

ecos(t) cos(sin(t)) dt−
∫ 2π

0

ecos(t) sin(sin(t)) dt

= 2πi.

By equating the real parts of both sides of this equation, and then the
imaginary parts, we obtain∫ 2π

0

ecos(t) cos(sin(t)) dt = 2π

and ∫ 2π

0

ecos(t) sin(sin(t)) dt = 0.

The first integral is not obvious. The second could be done without com-
plex analysis by observing that the integral from 0 to π is the negative of
the integral from π to 2π.
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Chapter 21

Series Representations of
Functions

21.1 Power Series

In each of Problems 1–6, the strategy is to take the limit of the magnitude of
the ratio of successive terms of the series. The series converges when this limit
(if it exists) is less than 1.

1. Take the limit of the magnitude of successive terms:

∣∣∣ (n+ 2)/2n+1

(n+ 1)/2n
|z + 3i| = 1

2

n+ 2

n+ 1
(z + 3i)

→ 1

2
|z + 3i|.

The series converges (absolutely) if

1

2
|z + 3i| < 1

or

|z + 3i| < 2.

The power series has radius of convergence 2 and open disk of convergence
|z + 3i| < 2, the open disk of radius 2 about the center −3i.

275
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3. ∣∣∣ (n+ 1)n+1/(n+ 2)n+1

nn/(n+ 1)n
(z − 1 + 3i)

∣∣∣
=

(n+ 1)2n+1

nn(n+ 2)n+1
|z − 1 + 3i|

=

(
n+ 1

n

)n(
n+ 1

n+ 2

)n+1

|z − 1 + 3i|

=

(
1 +

1

n

)n(
1 + 1/n

1 + 2/n

)n(
1 + 1/n

1 + 2/n

)
|z − 1 + 3i|

and the limit of this quantity is less than 1 if |z − 1 + 3i| < 1. The radius
of convergence is 1 and the disk of convergence is the open disk of radius
1 centered at 1− 3i.

In this limit, we have used (several times) the fact that

lim
n→∞

(
1 +

x

n

)n
= ex.

5. ∣∣∣ in+1/2n+2

in/2n
(z + 8i)

∣∣∣→ 1

2
|z + 8i|

This ratio has limit < 1 if |z + 8i| < 2. The power series has radius of
convergence 2 and the open disk of convergence is the open disk of radius
2 centered at −8i.

7. No. The power series has center 2i. If the series converges at 0, it must
also converge at the point i that is closer to the center 2i than 0 is.

In each of Problems 9–14, we attempt to use known series to derive the
requested series.

9. Assuming that we know the series for cos(z):

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n.

This converges for all z. Replace z with 2z to obtain

cos(2z) =
∞∑
n=0

(−1)n22n

(2n)!
z2n.

In writing these series, be careful with factorials. For example, in general
(2n)! 6= 2n!.
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11. This is just a rearrangement of the given polynomial into powers of z−2+i.
This can be done algebraically, or we can write the Maclaurin series of this
polynomial about 2− i. This series will be

f(z) = z2 − 3z + i = c0 + c1(z − 2 + i) + z2(z − 2 + i)2,

where
c0 = f(2− i) = −3, c1 = f ′(2− i) = 1− 2i

and

c2 =
1

2
f ′′(2− i) = 1.

The expansion of f(z) about 2− i is

z2 − 3z + i = −3 + (1− 2i)(z − 2 + i) + (z − 2 + i)2.

13. Like Problem 11, this can be done as an algebraic rearrangement of terms
in f(z) = (z−9)2, or as a power series about 1+ i, which will be in powers
of z − i− i. Using the latter approach, compute the coefficients

c0 = f(1 + i) = 63− 16i, c1 = f ′(1 + i) = −16 + 2i

and

c2 =
1

2
f ′′(1 + i) = 1.

Then

(z − 9)2 = 63− 16i+ (−16 + 2i)(z − 1− i) + (z − 1− i)2.

15. We know that f(0) = 1, f ′(0) = i, and f ′′(z) = 2f(z) + 1. Compute

f ′′(0) = 2f(0) + 1 = 3,

f (3)(0) = 2f ′′(0) = 2i,

f (4)(0) = 2f ′′(0) = 6,

f (5)(0) = 2f (3)(0) = 4i.

Now use Taylor’s formula for the coefficients (in this case, about 0,

cn =
1

n!
f (n)(0)

to write the first six terms of the expansion:

1 + iz +
3

2
z2 +

2i

3!
z3 +

6

4!
z4 +

4i

5!
z5.

In this problem it is not difficult to write the entire Maclaurin expansion,
because an inductive argument shows that

f (2n)(0) = 2n + 2n−1 and f (2n+1)(0) = 2ni.
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17. Let z be a complex number and consider the integral

1

2πi

∮
γ

zn

n!wn+1
ezw dw.

Here γ is the unit circle about the origin, oriented counterclockwise as
usual. Expand ezw in its Maclaurin series and parametrize γ(t) = eit for
0 ≤ t ≤ π to write∮

γ

zn

n!wn+1
ezw dw =

1

2πi

∮
γ

zn

n!wn+1

∞∑
k=0

(zw)k

k!
dw

=
1

2πi

∮
γ

∞∑
k=0

zn+kwk−n−1

n!k!
dw

=
1

2πi

∫ 2π

0

∞∑
k=0

zn+k

e

i(k−n−1)t

n!k!ieit dt

=
∞∑
k=0

1

2π

∫ 2π

0

zn+k

n!k!
ei(k−n)t dt.

Now, ∫ 2π

0

ei(k−n)t dt =

{
0 if k 6= n,

2π if k = n.

We therefore have

1

2πi

∮
γ

zn

n!wn+1
ezw dw =

(zn)2

(n!)2
.

Finally, we can write

∞∑
n=0

1

(n!)2
z2n =

∞∑
n=0

1

2πi

zn

n!wn+1
ezw dw

=
1

2πi

∫ 2π

0

∞∑
n=0

zn

n!ei(n+1)t
eze

it

eit dt

=
1

2π

∫ 2π

0

[ ∞∑
n=0

(ze−it)n

n!

]
eze

it

dt

=
1

2π

∫ 2π

0

eze
−it
eze

it

dt

=
1

2π

∫ 2π

0

ez(e
it+e−it) dt

=
1

2π

∫ 2π

0

e2z cos(t) dt.
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19. f(z) has a zero of order 4 at 0 because z2 has a zero of order 2 at 0 and
sin2(z) also has a zero of 2 there (because sin(z) has a zero of order 1 at
0).

21. f(z) has a zero of order 3 at 3π/2 because cos(z) has a simple zero there.

23. f(z) is not defined at z = 0, so we cannot really speak of it having a
zero there. However, notice something interesting. Using the Maclaurin
expansion of sin(z), with z4 in place of z, and divided by z2, we can write

1

z2
sin(z4) =

∞∑
n=0

(−1)n

(2n+ 1)!
z8n+2.

This power series converges for all z, and has the value 0 at 0. We can
therefore extend f(z) by giving it the value 0 at z = 0, and obtain a
differentiable function. This extended function has a zero of order 2 at 0.

25. Compute the kth derivative of f(z) at z0 using each series, obtaining

fk(z0) =

∞∑
n=0

an(n)(n− 1) · · · (n− k + 1)(z − z0)n−k

=
∞∑
n=0

bn(n)(n− 1) · · · (n− k + 1)(z − z0)n−k.

Then
fk(z0) = k!ak = k!bk,

so for each k = 0, 1, 2, · · · ,

ak =
1

k!
f (k)(z0) = bk.

21.2 The Laurent Expansion

Problems 1–10 are solved using manipulations of known series, such as geomet-
ric series and power series for exponential and trigonometric functions. It is
sometimes best, in seeking an expansion about z0, to focus on getting an ex-
pression involving powers of z−z0, using algebraic manipulations, or sometimes
integration and differentiation.

In particular, it is useful to know the geometric series

1

1− r
=
∞∑
n=0

rn

and
1

1 + r
=
∞∑
n=0

(−1)nrn,

for |r| < 1.
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1. We want an expansion in powers of z − i. To this end, begin with

2z

1 + z2
=

1

z − i
+

1

z + i
.

The first term is already an expansion in powers of z− i (having only one
term). For the second term, write

1

z + i
=

1

2i+ (z − i)
=

1

2i
(
1− z−i

2i

)
=

1

2i

∞∑
n=0

(−)n
(
z − i

2i

)n
=
∞∑
n=0

(−1)n

(2i)n+1
(z − i)n.

This expansion is valid for∣∣∣z − i
2i

∣∣∣ =
1

2
|z − i| < 1,

or
|z − i| < 2.

The Laurent expansion of f(z) about i is therefore

1

z − i
+
∞∑
n=0

(−1)n

(2i)n+1
(z − i)n.

This represents f(z) in the annulus 0 < |z − i| < 2.

3. If z 6= 0, then

1− cos(2z)

z2
=

1

z2

[
1−

∞∑
n=0

(−1)n

(2n)!
(2z)2n

]

=
∞∑
n=1

(−1)n+14n

(2n)!
z2n−2.

5. The denominator is already in terms of z − 1, so concentrate on the nu-
merator:

z2

1− z
=

((z − 1) + 1)2

1− z
= −1 + 2(z − 1) + (z − 1)2

z − 1

= − 1

z − 1
− 2− (z − 1).

This represents the function for 0 < |z − 1| <∞, the complex plane with
1 removed.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



21.2. THE LAURENT EXPANSION 281

7. Use the exponential series to obtain

1

z2
ez

2

=
1

z2

∞∑
n=0

1

n!
z2n =

∞∑
n=0

1

n!
z2n−2,

for 0 < |z| <∞.

9. The denominator is already a power of z − i, so we can write

z + i

z − i
=

2i+ (z − i)
z − i

= 1 +
2i

z − i
for 0 < |z − i| <∞.

11. By Cauchy’s integral formula, for any z enclosed by Γ1,

f(z) =
1

2πi

∮
Γ1

f(w)

w − z
dw.

Because Γ2 does not enclose z,

1

2πi

∮
Γ2

f(w)

w − z
dw = 0

by Cauchy’s theorem. The factor of 1/2πi was included in the last equation
so we can add these two integrals to get

f(z) =
1

2πi

[∮
Γ2

f(w)

w − z
dw +

∮
Γ1

f(w)

w − z
dw

]
.

Orientation on both curves is counterclockwise. In this sum of integrals,
L1 and L2 are traversed in both directions, so the integrals over these
segments are zero. The integrals in square brackets therefore give us the
integrals over γ1 and γ2, but counterclockwise on γ1 and clockwise on γ2.
Reversing this orientation on γ1 so that all integrals are over counterclock-
wise curves, we have

f(z) =
1

2πi

[∮
γ2

f(w)

w − z
dw −

∮
γ1

f(w)

w − z
dw

]
.

Now manipulate the 1/(w − z) factor in each integral to derive the result
we want. For the integral over γ2, write

1

w − z
=

1

w − z0 − (z − z0)

=
1

w − z0

1

1− (z − z0)/(w − w0)

=
1

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
=
∞∑
n=0

1

(w − z0)n+1
(z − z0)n.
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This geometric expansion is valid because, for w on γ2,∣∣∣w − z0

z − z0

∣∣∣ < 1.

For the integral over γ1, use the fact that, for w on this curve,∣∣∣w − z0

z − z0

∣∣∣ < 1.

Now we have

1

w − z
=

1

w − z0 − (z − z0)

=
−1

z − z0

1

1− (w − z0)/(z − z0)

= − 1

z − z0

∞∑
n=0

(
w − z0

z − z0

)

= −
∞∑
n=0

(w − z0)n
1

(z − z0)n+1
.

Substitute these expressions into the sum of integrals representing f(z)
and interchange the integrals with the summation to obtain

f(z) =
1

2πi

∮
γ2

( ∞∑
n=0

f(w)

(w − z0)n+1
dw

)
(z − z0)n

+
1

2πi

∮
γ1

( ∞∑
n=0

f(w)(w − z0)n dw

)(
1

z − z0

)n+1

=

∞∑
n=0

(
1

2πi

∮
γ2

f(w)

(w − z0)n+1
dw

)
(z − z0)n

+
∞∑
n=0

(
1

2πi

∮
γ1

f(w)(w − z0)n dw

)
1

(z − z0)n+1
.

Finally, use the deformation theorem to replace these integrals over γ1 and
γ2 with integrals over Γ, which is any simple closed path in the annulus
and enclosing z0. This gives us

f(z) =
∞∑

n=−∞
cn(z − z0)n,

with the integral expressions given for the coefficients cn.
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Chapter 22

Singularities and the
Residue Theorem

22.1 Singularities

1. cos(z)/z has one singularity, a double pole at z = 0.

3. e1/z(z + 2i) has an essential singularity at 0.

5. The function has a double pole at 1 and simple poles at i and −i.

7. Write
z − i
z2 + 1

=
z − i

(z + i)(z − i)
=

1

z + i
,

so the function has a simple pole at −i.

9. The denominator has simple zeros at 1,−1, i,−i and these are simple
poles of the function because the numerator does not vanish at any of
these numbers.

11. sec(z) = 1/ cos(z) has simple poles at the zeros of cos(z), which are the
simple zeros (2n+ 1)π/2 with n any integer.

13. Suppose f is differentiable at z0 and f(z0) 6= 0, while g has a pole of order
m at z0. We want to show that the product fg has a pole of order m at
z0.

Because g has a pole of order m at z0, the Laurent expansion in some
annulus about z0 has the form

g(z) =
k

(z − z0)m
+

∞∑
n=−m+1

cn(z − z0)n.

283
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284 CHAPTER 22. SINGULARITIES AND THE RESIDUE THEOREM

with k 6= 0. Then

(z − z0)mg(z) = k +
∞∑

n=−m+1

cn(z − z0)n+m.

If we denote the power series on the right as h(z), then

(z − z0)mg(z) = h(z),

where h(z0) = k 6= 0. Further, in some annulus about z0,

f(z)g(z) =
f(z)h(z)

(z − z0)m
.

Because f(z0)h(z0) 6= 0, f(z)g(z) has a pole of order m at z0.

22.2 The Residue Theorem

1. The function has simple poles at 1 and −2i, both enclosed by γ. Keep in
mind that only singularities enclosed by the curve are relevant in evaluat-
ing the integral by the residue theorem.

Compute

Res(f, 1) = lim
z→1

d

dz

(
1 + z2

z + 2i

)
= lim
z→1

(z + 2i)(2z)− (1 + z2)

(z + 2i)2

=
4i

−3 + 4i
,

and

Res(f,−2i) = lim
z→−2i

1 + z2

(z − 1)2
=

−3

−3 + 4i
.

Then ∮
γ

1 + z2

(z − 1)2(z + 2i)
dz = 2πi

[
4i

−3 + 4i
− 3

−3 + 4i

]
= 2πi.

3. The only singularity of ez/z is a simple pole at 0, and this is not enclosed
by γ, so ∮

γ

ez

z
dz = 0

by Cauchy’s theorem.
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5. The function has simple poles at
√

6i and −
√

6i, both enclosed by γ. Then∮
γ

z + i

z2 + 6
dz = 2πi

[
Res(6,

√
6i) + Res(f,−

√
6i)
]

= 2πi

[√
6 + 1

2
√

6
+

√
6− 1

2
√

6

]
= 2πi.

7. z/ sinh2(z) has a simple pole at 0 and double poles at nπi, for every
nonzero integer n. The only singularity enclosed by γ is 0, so∮

γ

f(z) dz = 2πiRes(f, 0).

Compute this residue as

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

(
z2

sinh2(z)

)
= lim
z→0

z2

z2 + 1
6z

4 + · · ·

= lim
z→0

1

1 + 1
6z

2 + · · ·
= 1.

Then ∮
γ

z

sinh2(z)
dz = 2πi.

9. f(z) has simple poles at i, 3i and −3i. Only the pole at −3i is enclosed
by the curve, so∮

γ

iz

(z2 + 9)(z − i)
dz = 2πiRes(f,−3i)

= 2πi lim
z→−3i

iz

(z − 3i)(z − i)
= 2πi

(
−1

8

)
= −πi

4
.

11. f(z) has only one singularity, a simple pole at −4i, and this is outside the
region bounded by the curve. By Cauchy’s theorem,∮

γ

8z − 4i+ 1

z + 4i
dz = 0.

13. The singularities of coth(z) = cosh(z)/ sinh(h) are the zeros of sinh(z).
This means that coth(z) has simple poles at nπi, with n any integer.
Only the simple pole at 0 is enclosed by the curve, so∮

γ

coth(z) dz = Res(f, 0) = 2πi
cosh(0)

cosh(0)
= 2πi.
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15. 0 and 4i are simple poles of f(z) and both are enclosed by γ, so∮
γ

e2z

z(z − 4i)
dz = 2πi [Res(f, 0) + Res(f, 4i)]

= 2πi

[
− 1

4i
+
e4i

4i

]
=
π

2
[cos(8)− 1 + i sin(8)].

17. z0 is a zero of order 2 of h(z), but g(z0) 6= 0. We want to show that

Res(g/h, z0) =
2g′(z0)

h′′(z0)
− 2

3

g(z0)h(3)(z0)

(h′′(z0))2
.

To do this, first write

h(z) = (z − z0)2ϕ(z),

with ϕ(z0) 6= 0. Then

Res(g/h, z0) = lim
z→z0

d

dz

(
(z − z0)2 g(z)

h(z)

)
= lim
z→z0

d

dz

(
(z − z0)2ϕ(z)

g(z)

(z − z0)2ϕ(z)

)
= lim
z→z0

d

dz

(
g(z)

ϕ(z)

)
=
ϕ(z0)g′(z0)− ϕ′(z0)g(z0)

(ϕ(z0))2
.

Now,

h′(z) = 2(z − z0)ϕ(z) + (z − z0)2ϕ′(z).

,

h′′(z) = 2ϕ(z) + 4(z − z0)ϕ′(z) + (z − z0)2ϕ′′(z),

and

h(3)(z0) = 6ϕ′(z) + 6(z − z0)ϕ′′(z) + (z − z0)2ϕ(3)(z).

Then

ϕ(z0) =
1

2
h′′(z0) and ϕ′(z0) =

1

6
h(3)(z0).

Substituting these into the expression for the residue, we have

Res(g/h, z0) =
2g′(z0)

h′′(z0)
− 2

3

g(z0)h(3)(z0)

(h′′(z0))2
.
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19. By the residue theorem, with g(z) = z/(2 + z2),∮
γ

z

2 + z2
dz = 2πi

[
Res(g,

√
2i) + Res(g,−

√
2i)
]

= 2πi

[ √
2i

2
√

2i
+
−
√

2i

−2
√

2i

]
= 2πi.

To use the argument principle, write

g(z) =
f ′(z)

f(z)
=

1

2

2z

2 + z2
,

with f(z) = 2 + z2. Then f ′/f = 2g. Now f(z) has two simple zeros
enclosed by γ, and no poles, so Z = 2, P = 0, and∮

γ

z

2 + z2
dz =

1

2

∮
γ

2z

1 + z2
dz

=
1

2
(2πi)(Z − P ) = 2πi.

21. g(z) = (z + 1)/(z2 + 2z + 4) has simple poles at −1±
√

3i enclosed by γ.
By the residue theorem∮

γ

z + 1

z2 + 2z + 4
dz = 2πi

[
Res(g,−1−

√
3) + Res(g,−1 +

√
3)
]

= 2πi

[
1− 1−

√
3i

2(−1−
√

3i) + 2
+
−1 +

√
3i+ 1

2(−1 +
√

3i) + 2

]

= 2πi

(
1

2
+

1

2

)
= 2πi.

To use the argument principle, write

z + 1

z2 + 2z + 4
=

1

2

f ′(z)

f(z)

where f(z) = z2 + 2z+ 4. f(z) has z = 2 zeros enclosed by γ and no poles
(P = 0), so ∮

γ

2z + 2

z2 + 2z + 4
dz = πi(Z − P ) = 2πi.

22.3 Evaluation of Real Integrals

1. With z = eiθ,

cos(θ) =
1

2

(
z +

1

z

)
and dθ =

1

iz
dz
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so ∫ 2π

0

1

2− cos(θ)
dθ =

∮
γ

1

2− 1
2 (z + 1/z)

1

iz
dz

= 2i

∮
γ

1

z2 − 4z + 1
dz.

The integrand has simple poles at z1 = 2−
√

3 and z2 = 2 +
√

3. Only z1

is enclosed by γ, and

Res(f, 2−
√

3) =
1

2(2−
√

3)− 4
= − 1

2
√

3
.

Then ∫ 2π

0

1

2− cos(θ)
dθ = 2i(2πi)

−1

2
√

3
=

2π√
3
.

3. f(z) = 1/(1 + z6) has simple poles in the upper half-plane at z1 = i,
z2 = (

√
3 + i)/2, and z3 = (−

√
3 + i)/2. The residues of f(z) at these

poles are

Res(f, zj) =
1

6z5
j

= −1

6
zj ,

so ∫ ∞
−∞

1

1 + x6
dx = 2πi

[
1

6
(z1 + z2 + z3)

]
=

2π

3
.

Then ∫ ∞
0

1

1 + x6
dx =

π

3
.

5. Let

f(z) =
ze2iz

z4 + 16
.

f has simple poles in the upper half-plane at z1 = (1 + i)/
√

2 and z2 =
(−1 + i)/

√
2. Compute the residues:

Res(f, z1) =
e2
√

2i(−1+i)

16i
and Res(f, z2) =

e2
√

2(−1− i)
−16i

to obtain∫ ∞
−∞

x sin(2x)

x4 + 16
dx = Im

[
2πi

(
e−2
√

2

8

)(
e2
√

2i − e−2
√

2i

2i

)]

=
πe−2

√
2

4
sin(2

√
2).
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7. First use the identity

cos2(x) =
1

2
(1 + cos(2x))

to write ∫ ∞
−∞

cos2(x)

(x2 + 4)2
dx =

1

2

∫ ∞
−∞

1 + cos(2x)

(x2 + 4)2
dx.

Let

f(z) =
1 + e2iz

(z2 + 4)2
.

Then f has a pole of order 2 in the upper half-plane at 2i. Compute

Res(f, 2i) = lim
z→2i

d

dx

[
1 + e2iz

(z + 2i)2

]
=

1 + 5e−1

32i
.

Then ∫ ∞
−∞

cos2(x)

(x2 + 4)2
dx =

1

2
Re

[
2πi

(
1 + 5e−1

32i

)]
=

π

32
(1 + 5e−4).

9. Let f(z) = z2/(z2 + 4)2. The only singularity of f in the upper half-plane
is 2i, which is a double pole. Compute

Res(f, 2i) = lim
z→2i

d

dz

[
z2

(z + 2i)2

]
= − i

8
.

Then ∫ ∞
−∞

x2

(x2 + 4)2
dx = 2πi

(
− i

8

)
=
π

4
.

11. Let

f(z) =
eiαz

z2 + 1
.

The only singularity f has in the upper half-plane is a simple pole at i.
Compute

Res(f, i) =
e−α

2i
.

Then ∫ ∞
−∞

cos(αx)

x2 + 1
dx = 2πi

(
e−α

2i

)
= πe−α.
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13. Begin with∫ 2π

0

1

α2 cos2(θ) + β2 sin2(θ)
dθ

=

∮
γ

1

α2(z + 1/z)2/4− β2(z − 1/z)2/4

1

iz
dz

=
4

i

∮
γ

z

(α2 − β2)z4 + 2(α2 + β2)z2 + (α2 − β2)
dz.

Singularities of the integrand satisfy

z2 =
β − α
β + α

or z2 =
β − α
β + α

.

Because α and β are positive,∣∣∣β − α
β + α

∣∣∣ < 1 and
∣∣∣β + α

β − α

∣∣∣ > 1.

The simple poles enclosed by the unit circle are the square roots z1 and z2

of (β−α)/(β+α). The residue of the integrand at each of these poles can
be computed using Corollary 22.1. Omitting the arithmetic, we obtain

Res(f, zj) =
1

8αβ

for j = 1, 2. Then∫ 2π

0

1

α2 cos2(θ) + β2 sin2(θ)
dθ =

4

i
(2πi)

2

8αβ
=

2π

αβ
.

15. Let Γ be the given rectangular path. The four sides are:

Γ1 : z = t,−R ≤ t ≤ R,
Γ2 : z = R+ it, 0 ≤ t ≤ β,
Γ3 : z = t+ iβ,−R ≤ t ≤ R,
Γ4 : z = −R+ it, 0 ≤ t ≤ β.

These are, respectively, the lower side, right side, top side and left side of
the rectangle. In carrying out the integrations, limits of integration must
be consistent with counterclockwise orientation of Γ.

Because e−z
2

is differentiable for all z, then by Cauchy’s theorem,∮
Γ

e−z
2

dz = 0 =
4∑
j=1

∫
Γj

e−z
2

dz.

Evaluate each of the four integrals in the sum on the right as follows.
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∫
Γ1

e−z
2

dz =

∫ R

−R
e−t

2

dt,

∫
Γ2

e−z
2

dz =

∫ β

0

e−(r2+2Rti−t2)i dt

= ie−R
2

∫ β

0

et
2

[cos(2Rt)− i sin(2Rt)] dt,

∫
Γ3

e−z
2

dz =

∫ R

−R
e−(t2+2βti−β2) dt

= e−β
2

∫ R

−R
e−t

2

[cos(2βt)− i sin(2βt)] dt,

and ∫
Γ4

e−z
2

dz =

∫ 0

β

e−(R2−2Rti−t2)i dt

= ie−R
2

∫ β

0

[et
2

[− cos(2βt)− i sin(2βt)] dt.

Now let R → ∞. The terms having a factor of e−R
2

go to zero in the
limit, and upon adding these integrals over the sides of the rectangle, we
obtain, using x as the variable of integration on the line,∫ ∞

−∞
e−x

2

dx− e−β
2

∫ ∞
−∞

[cos(2βx)− i sin(2βx)] dx = 0.

Now, e−x
2

sin(2βx) is an odd function on the real line, so∫ ∞
−∞

e−x
2

sin(2βx) dx = 0.

We are therefore lift with

eβ
2

∫ ∞
−∞

cos(2βx) dx =

∫ ∞
−∞

e−x
2

dx.

Finally, use the known result that∫ ∞
−∞

e−x
2

dx =
√
π

to conclude that ∫ ∞
−∞

e−x
2

cos(2βx) dx =
√
πe−β

2

.
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Finally, because e−x
2

cos(2βx) is an even function on the real line, then∫ ∞
0

e−x
2

cos(2βx) dx =

√
π

2
e−β

2

.

17. First observe that, because the integrand is an even function,∫ ∞
0

x sin(αx)

x4 + β4
dx =

1

2

∫ ∞
−∞

x sin(αx)

x4 + β4
dx.

Now,

f(z) =
zeiαz

z4 + β4

has simple poles in the upper half-plane at z1 = βeiπ/4 and z2 = βe3πi/4.
Compute the residues of f at these poles:

Res(f, zk) =

[
zeiαz

4z3

]
z=zk

=
eiαβzk

4z2
k

.

In particular,

Res(f, z1) =
1

4β2i
eiαβe

iπ/4

and Res(f, z2) =
1

−4β2i
eiαβe

3iπ/4

.

Then∫ ∞
0

x sin(αx)

x4 + β4
dx =

1

2
Im

[
2πi

4β2

(
eiαβ(1+i)/

√
2 − eiαβ(−1+i)/

√
2
) 1

i

]
=
πe−αβ/

√
2

2β2
sin

(
αβ√

2

)
.
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Chapter 23

Conformal Mappings and
Applications

23.1 Conformal Mappings

For Problems 1–3, the image of the given rectangle is given as a graph for each
part of the problem.

1. (a) The rectangle defined by 0 ≤ x ≤ π, 0 ≤ y ≤ π maps to the sector

1 ≤ r ≤ eπ, 0 ≤ θ ≤ π.

See Figure 23.1.

(b) This rectangle maps to the sector

1

e
≤ r ≤ e,−π

2
≤ θ ≤ π

2
.

See Figure 23.2.

(c) The rectangle maps to the sector

1 ≤ r ≤ e, 0 ≤ θ ≤ π

4
.

See Figure 23.3.

(d) The rectangle maps to the sector

e ≤ r ≤ e2, 0 ≤ θ ≤ π.

See Figure 23.4.

(e) The rectangle maps to the sector

1

e
≤ r ≤ e2,−π

2
≤ θ ≤ π

2
.

See Figure 23.5.

293
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294 CHAPTER 23. CONFORMAL MAPPINGS AND APPLICATIONS

Figure 23.1: Image of the rectangle 0 ≤ x ≤ π, 0 ≤ y ≤ π under w = ez.

Figure 23.2: Image of −1 ≤ x ≤ 1,−π/2 ≤ y ≤ π/2.
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Figure 23.3: Image of the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ π/4.

Figure 23.4: Image of the rectangle 1 ≤ x ≤ 2, 0 ≤ y ≤ π.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



296 CHAPTER 23. CONFORMAL MAPPINGS AND APPLICATIONS

Figure 23.5: Image of the rectangle −1 ≤ x ≤ 2,−π/2 ≤ y ≤ π/2.

3. For the images of the given rectangles of parts (a) through (e), see Figures
23.6–23.10, respectively.

5. The analysis proceeds like that of Problem 4. Let z = reiθ. If π/6 ≤
θ ≤ π/3, then π/2 ≤ 3θ ≤ π, so image points under this mapping lie in
the second quadrant. It is routine to verify that this mapping is onto the
second quadrant.

7. Using some of the analysis from Problem 6, a half-line θ = k maps to
points u+ iv with

u =
1

2

(
r +

1

r

)
cos(k), v =

1

2

(
r − 1

r

)
sin(k).

If sin(k) 6= 0 and cos(k) 6= 0, then a little algebraic manipulation shows
that

u2

cos2(k)
− v2

sin2(k)
= 1.

This is the equation of a hyperbola with foci (±c, 0), where

c2 = cos2(k) + sin(k) = 1.

Finally, the cases cos(k) = 0 and sin(k) = 0 must be considered separately.
If cos(k) = 0, then k = (2n+ 1)π/2. Now u = 0 and −∞ < v <∞, so the
image is the imaginary axis in the x−plane.
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Figure 23.6: Image of the rectangle 0 ≤ x ≤ π/2, 0 ≤ y ≤ π/2.

Figure 23.7: Image of the rectangle π/4 ≤ x ≤ π, 0 ≤ y ≤ π/2.
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Figure 23.8: Image of the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ π/6.

Figure 23.9: Image of the rectangle π/2 ≤ x ≤ 3π, 0 ≤ y ≤ π/2.
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Figure 23.10: Image of the rectangle 1 ≤ x ≤ 2, 1 ≤ y ≤ 2.

If sin(k) = 0, then k = nπ with n an integer. Now v = 0 and

u =
1

2

(
r +

1

r

)
(−1)n.

This is the half-interval u ≥ 1 on the real axis in the w−plane if n is even,
and u ≤ −1 if n is odd.

9. Write
w = 2z2 = 2(x+ iy)2 = 2(x2 − y2) + 4ixy = u+ iv.

Then vertical line x = 0 maps to u = −2y2, v = 0, so the image is the
negative u− axis. Other vertical lines x = a 6= 0 map onto parabolas

u = 2a2 − v2

2a2
.

The horizontal line y = 0 maps to u = 2y2 ≥ 0, the positive u−axis.
Other horizontal lines y = b 6= 0 map onto the parabolas

u =
v2

8b2
− 2b2.

Figure 23.11 shows the image of the rectangle 0 ≤ x ≤ 3/2, −3/2 ≤ y ≤
3/2.
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Figure 23.11: Image of the rectangle in Problem 9 with α = 2.

11. If Re(z) = −4, then (z + z)/2 = −4, so z + z = −8. Now, w = 2i/z, so
z = 2i/w, so

z + z =
2i

w
− 2i

w
= −8.

Multiply this by ww and rearrange terms to obtain

8ww − 2i(w − w) = 0.

Now put w = u+ iv to get

2(u2 + v2) + v = 0,

or

u2 +

(
v +

1

4

)2

=
1

4
.

This is the equation of a circle of radius 1/2 centered at (0,−1/4) in the
w− plane. This is the image of the line x = −4 under the given mapping.

13. From the mapping, solve for z:

z =
−1

w + i
.

Substitute this into the given line to obtain

1

2

(
−1

w + i
− 1

w − i

)
+

1

2i

(
−1

w + i
+

1

w − i

)
= 1.
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Multiply this equation by 2i(w + i)(w − i) and rearrange terms, putting
w = u+ iv to obtain

4(u2 + v2) + 7v + u = 3.

Complete the square to write this as(
u+

1

8

)2

+

(
v +

7

8

)2

=
1

32
.

This is a circle of radius 1/2
√

2 and center (−1/8,−7/8), and is the image
of the given line.

15. Invert the mapping to obtain

z =
5 + iw

2− w
.

Then

z − z = 2Re(z) = 2Re

(
5− v + iu

2− u− iv

)
=

2((5− v)(2− u)− uv)

(u− 2)2 + v2

=
20− 4v − 10u

(u− 2)2 + v2
.

Next,
1

2i
(z − z) = Im(z) =

(2− u)u+ (5− v)v

(u− 2)2 + v2
.

Substitute these into the equation of the given line and clear fractions to
obtain

(u− 1)2 +

(
v +

19

4

)2

=
377

16
.

This is the equation of a circle with radius
√

377/4 and having center
(1,−19/4).

17. Substitute the given values into equation (23.1) to obtain

(1− w)(1 + 2i)(−1)(3− z) = (1− z)(1)(1 + i)(1− i− w).

Solve for w to obtain

w =
(1 + 4i)z − (3 + 8i)

(2 + 3i)z − (4 + 7i)
.
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19. Here w3 =∞ so use equation (23.2), obtaining

(1 + i− w)(1− 2i)(4− z) = (1− z)(−2 + 2i)(4− 2i).

Then

w =
(33 + i)z − (48 + 16i)

5(z − 4)
.

21. Using equation (23.1), we find that

w =
(3 + 22i) + 4− 75i

(2 + 3i)− (21− 4i)
.

23. If we require that a conformal mapping be differentiable, then immediately
T (z) = z is disqualified. But it is also easy to see directly that this
mapping reverses orientation. For example, let C1 be the nonnegative real
axis and C2 the nonnegative imaginary axis. The sense of rotation from
C1 to C2 is counterclockwise. But T maps C1 to itself and C2 to the
negative imaginary axis, reversing the orientation to clockwise. Therefore
T is not conformal.

25. Let

T (z) =
az + b

cz + d
.

By the argument of Problem 24, if T is not a translation or the identity
mapping, then T can have at most two fixed points. Therefore, if T has
three fixed points, then T is either a translation or the identity map. But
a translation has no fixed point, so in this case T must be the identity
map.

27. Given z2, z3, z4, let P be the unique bilinear transformation that maps

z2 → 1, z3 → 0, z4 →∞.

Then by definition of the cross ratio,

P (z1) = [z1, z2, z3, z4].

Now let T be any bilinear transformation. Then

[T (z1), T (z2), T (z3), T (z4)] = R(T (z1)),

where R is the unique bilinear transformation that maps

T (z2) = 1, T (z3) = 0, T (z4) =∞.

Then R ◦ T = P . Then

[T (z1), T (z2), T (z3), T (z4)] = R(T (z1))

= P (z1) = [z1, z2, z3, z4].

29. In the definition of cross ratio, w2, w3 and w4 all lie on an (extended)
line, the real axis. Because bilinear transformations map lines/circles to
lines/circles, then [z1, z2, z3, z4] is real exactly when z1, z2, z3, z4] all lie on
the same line or circle.
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23.2 Construction of Conformal Mappings

If a conformal mapping is requested between two domains, there will in gen-
eral be many different possible mappings. In each of the solutions below, one
mapping is found, but other approaches may yield other suitable mappings.

1. Both domains are open disks, having radii 3 and 6, and different centers,
0 and 1− i, respectively. We can map |z| < 3 ont |w− 1 + i| < 6 by using
a scaling factor of 2 and a translation to superimpose the center of the
initial domain onto the center of the image domain. Thus compose

z → 2z → 2z + 1− i.

One mapping that does what we want is

w = 2z + 1− i.

Now

|w − 1 + i| = 2|z| = 2(3) = 6

if |z| = 3.

3. We will need an inversion at some stage because we are mapping the
interior of a disk to the exterior of another disk. First translate by w1 =
z+ 2i, so the image disk in the w−plane has the origin as its center. Next
invert by

w2 =
1

z + 2i
.

Next scale by a factor of 2 to match the radii of the bounding circles:

w3 = 2w2 =
2

z + 2i
.

Finally, translate to have center 2:

w4 = w3 + 3 =
2

z + 2i
+ 3 =

3z + 2 + 6i

z + 2i
.

5. We can map the line Re(z) = 0 to the circle by |w| = 4 by a bilinear
transformation. The domain Re(z) < 0 consists of numbers to the left of
the imaginary axis, which is the boundary of this domain. Choose three
points on this axis, ordered upward so the region Re(z) < 0 is on the
left as we walk up the line. Next choose three points on the image circle
|w| = 4, counterclockwise so the interior of the circle is on the left as we
walk counterclockwise around the circle. Convenient choices are

z1 = −i, z2 = 0, z3 = i and w1 = −4i, w2 = 4, w3 = −4i.
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Using equation (23.1), we find the bilinear transformation mapping zj →
wj :

w = T (z) = 4

(
1 + z

1− z

)
.

As a check, z = −1, which has negative real part, maps to 0, interior to
the disk |w| < 4. Thus T maps Re(z) < 1 to |w| < 4, rather than to the
exterior |w| > 4.

7. Because the boundary of the wedge in the w−plane is not a circle or line,
a bilinear transformation will not work here. However, wedges suggest
polar representations. Let z = reiθ for 0 < θ < π. These are points in the
upper half-plane. Let

w = z1/3 = r1/3eiθ/3 = ρeiϕ.

Here ρ > 0 and 0 ≤ ϕ ≤ π/3. This mapping is conformal because

dw

dz
=

1

3
z−2/3 6= 0

for z in the upper half-plane, and the mapping takes the open upper half-
plane onto the open wedge 0 < θ < π/2.

9. The solution of this problem requires some familiarity with the gamma
and beta functions.

To show that f maps the upper half-plane onto the given rectangle, we
will evaluate the function at −1, 0, 1 and ∞ and then show that these are
the vertices of that rectangle.

First, it is obvious that f(0) = 0. Next,

f(1) = 2i

∫ 1

0

(ξ2 − 1)−1/2ξ−1/2 dξ

= 2i

∫ 1

0

(1− ξ2)−1/2

i
ξ−1/2 dξ

= 2

∫ 1

0

(1− ξ2)−1/2ξ−1/2 dξ.

Let ξ = u1/2 to obtain

f(1) =

∫ 1

0

(1− u)−1/2u−3/4 du

= B(1/4, 1/2) =
Γ(1/4)Γ(1/2)

Γ(3/4)
= c,

in which B(x, y) is the beta function and Γ(x) is the gamma function.
Next, write

f(−1) = 2i

∫ 1

0

(ξ2 − 1)−1/2ξ−1/2 dξ.
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Let ξ = −u to obtain

f(−1) = 2i

∫ 1

0

(1− u2)−1/2u−1/2 du

= iB(1/4, 1/2) = i
Γ(1/4)Γ(1/2)

Γ(3/4)
= ic.

Finally,

f(∞) = 2i

∫ ∞
0

(ξ + 1)−1/2(ξ − 1)−1/2ξ−1/2 dξ

= 2i

∫ 1

0

(ξ + 1)−1/2(ξ − 1)−1/2ξ−1/2 dξ

+ 2i

∫ ∞
1

(ξ + 1)−1/2(ξ − 1)−1/2ξ−1/2 dξ.

The first integral in the last line of the last equation is B(1/4, 1/2). In
the second integral, put ξ = 1/u to get

f(∞) = c+ 2i

∫ 0

1

(
1 + u

u

)−1/2(
1− u
u

)−1/2

u1/2

(
1

u2

)
du

= c+ 2i

∫ 1

0

(1− u2)−1/2u−1/2 du = (1 + i)u.
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