SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GRADE 12

GEOGRAPHY

LEARNER HOMEWORK SOLUTIONS

The SSIP is supported by

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
8	1 Geomorphology consolidation	3
9	 Climatology, Geomorphology and Mapwork Consolidation exercises 	6
10	Climatology, Geomorphology and GIS: consolidation exercises	10
11	Climatology, Geomorphology and Mapwork: consolidation exercises	14

GEOGRAPHY	GRADE 12	SESSION 8	(HOMEWORK SOLUTIONS)
			. ,

HOMEWORK SOLUTIONS: SESSION 8

TOPIC: GEOMORPHOLOGY CONSOLIDATION

QUESTION 1

1.1	(a)	Discharge – the volume of water in a rive	er passing at a	any given po	oint
		in a certain time – measured in cumecs.	$\sqrt{}$	[Concept]	(1 x 2) (2)
	(b)	Flood - when peak discharge exceeds ch	annel capaci	ty/More rain	fall
		than the average for the area for a few co	onsecutive ye	ars √√	
				[Concept]	(1 x 2) (2)
	(c) (d)	Flood peak – the greatest volume in a riv Hydrograph – graph showing the dischar	er, after rain. ge of a river.	[Concept √√	(1 x 2) (2)
				[Concept]	(1 x 2) (2)
	(e)	Velocity – speed of a river in a certain dir	ection. 🗸	[Concept]	(1 x 2) (2)
1.2	A – Pe	eak discharge 🗸			
	B – La	ag time 🗸			
	C – R	ising limb ✓✓			
	D – Ba	ase flow $\checkmark\checkmark$			(4 x 2) (8)
1.3	The d	ischarge increases as the amount of rainfa	all increases	√√ – as rair	nfall
	decrea	ases so does the discharge decrease \checkmark			(2 x 2) (4)
1.4	Gradie	ent/steep slopes – faster flow ✓✓			
	Volum	The of water – lots of water flow faster $\sqrt{}$.		
	Shape	e of river channel – straight will have faste	r flow √ √		
	Rougr	nness of river channel – laminar flow is fas	Sterv v	throal	(2, y, 2) (6)
	моп-р	orous rocks – laster now * *	[Αссері АΝΤ	uneej	$(3 \times 2) (0)$
1.5	The v	olume would gradually decrease $\checkmark\checkmark$			(1 x 2) (2)
1.6	If the g	gradient of slopes is gentle, the water will $\sqrt{\sqrt{2}}$	run off slower	and infiltrat	e
	Veget	ation cover traps and slows run off down -	- therefore, m	ore infiltratio	on √√
	Permeable surfaces will allow water to infiltrate – therefore, less run off \checkmark				
	Porou	s soil allows water to pass through – there	efore, more in	filtration 🗸 🗸	×
	If ther	e is little water in the soil, more infiltration	will take place	e√√	
	Gentle	e, soaking rain leads to more infiltration $\sqrt{2}$	√ ۲۸ م ۲	N/E factorel	(E v 2) [40]
	Gentie		LAUÀ F		(5 X Z) [10]
					[40]

GEOGRAPHY	GRADE 12	SESSION 8	(HOMEWORK SOLUTIONS)
QUESTION 2			
2.1.1 $A \checkmark \checkmark$ 2.1.2 $D \checkmark \checkmark$ 2.1.3 $A \checkmark \checkmark$ 2.1.4 $C \checkmark \checkmark$ 2.1.5 $B \checkmark \checkmark$			(2) (2) (2) (2) (2) (10]
			[10

2.2.1 Longitudinal river profile

- One temporary base level / waterfall/dam/ rapid / lake √√ (1 x 2) (2)
- One knick point / waterfall/dam/ rapid / lake $\checkmark\checkmark$
- Permanent base level sea level √√
- 2.2.2 Fluvial Point X Point Y characteristics Narrow, 'V' shape, steep More open 'U' shape, gentle Stream width sides √ sides √ Large boulders, stones, Fine silt (dissolved and in Stream load large-grained sand, mixed ✓ suspension) √ Less water ✓ Far greater discharge ✓ Stream volume Stream velocity Quite fast ✓ Greatest velocity ✓ Type of stream flow Predominantly turbulent ✓ Mainly laminar ✓
 - (10 x 1) (10)

 $(1 \times 2) (2)$

 $(1 \times 2) (2)$

2.2.3 No, profile is ungraded √√ – there are several 'obstructions' in the profile (e.g. Lake Mweru, Lake Bangwuelu, Stanley Pool), √√ knickpoints present (just below Lake Mweru). A graded profile is perfectly smooth and concave. √√

(3 x 2) (6)

2.2.5 Written in the form of a report for the Minister of Water Affairs:

- Fluvial changes upstream: river velocity will be 'checked' (halted/impeded) and the dam will deposit load, silt will build up behind dam wall, water will build up behind dam wall, and river width and depth will increase √√√√√√
- Benefits of dam: irrigation for farmers, water for domestic/industrial use, recreation (tourism fishing, sailing, boating, water skiing, etc. good income earner), possible energy source (hydro-electricity) √ √ √ √ √ √ (5 x 2) (10)

[50]

GEOGRAPHY	GRADE 12	SESSION 9	(HOMEWORK SOLUTIONS)
-----------	----------	------------------	----------------------

HOMEWORK SOLUTIONS: SESSION 9

TOPIC: CLIMATOLOGY, GEOMORPHOLOGY AND MAPWORK CONSOLIDATION EXERCISES

QUESTION 1

1.1

1.1.1	A - Equatorial low pressure√ B - Sub- tropical high pressure√	
	C - Sub-polar low pressure $$	(3 x 1) (3)
1.1.2	It lies north of the equator in July, especially over the landmasses; it lies south of the equator in January $\!$	(1 x 2) (2)
1.1.3	The pressure belts follow the movement of the overhead sun, moving northwards during the northern hemisphere summer when the sun is	
	overhead at the Tropic of Cancer, and southwards in the southern hemist	ohere
	summer when the sun is overhead at the Tropic of Capricorn. $\sqrt{}$	(1 x 2) (2)
1.1.4	These are large landmasses that are intensely heated in summer, and	
	This results in the low pressure extending further north. $\sqrt{}$	(1 x 2) (2)
1.1.5	There is a large high-pressure over the land. $$	(1)
1.1.6	It is winter, and the large landmass is cold, causing a thermal high	
	Pressure to coincide with the sub-tropical high pressure that is now in its	
4 4 7	more southerly position. \sqrt{v}	$(1 \times 2) (2)$
1.1./	It is summer in the southern nemisphere, and the landmasses are not,	
	interrupts the development of the sub-tropical high pressures $\sqrt{1}$	$(1 \times 2) (2)$
118	The horse latitudes $$	$(1 \times 2)(2)$ (1)
11110		[15]
1.2		
1.2.1	$10\sqrt{10}$ as hurricanes are named alphabetically from the start of the hurrican	
1.2.1	10 as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet. $$	ie (2 x 1) (2)
1.2.1 1.2.2	10 $$ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet. $$ The cloud cover indicates an anti-clockwise convergence of air towards the event $$	ie (2 x 1) (2) ie (1 x 2) (2)
1.2.1 1.2.2	10 $$ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet. $$ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{}$ The sky is clear $$; it is warm and calm $$. This is because divergence in the	ne (2 x 1) (2) ne (1 x 2) (2)
1.2.1 1.2.2 1.2.3	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet. $$ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{}$ The sky is clear $$; it is warm and calm $$. This is because divergence in the upper atmosphere $$ causes air to descend in the eye $$	ie (2 x 1) (2) ne (1 x 2) (2) e (4 x 1) (4)
 1.2.1 1.2.2 1.2.3 1.2.4 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet. $$ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{}$ The sky is clear $$; it is warm and calm $$. This is because divergence in the upper atmosphere $$ causes air to descend in the eye. $$ The hurricane has come from the south-east. It has therefore moved in a	ne (2 x 1) (2) ne (1 x 2) (2) e (4 x 1) (4)
 1.2.1 1.2.2 1.2.3 1.2.4 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east.	ne (2 x 1) (2) ne (1 x 2) (2) (4 x 1) (4) √√
 1.2.1 1.2.2 1.2.3 1.2.4 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east.	$\begin{array}{c} 1 \\ (2 \times 1) \\ (2 \\ (2 \times 1) \\ (2 \\ (1 \times 2) \\ (2 \\ (4 \times 1) \\ (4 \\ \sqrt{1} \\ \sqrt{1} \\ (2 \times 1) \\ (2 \\ (2 \\ (2 \\ (2 \\ (2 \\ (2 \\ (2 \\ ($
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with more	ie (2 x 1) (2) ne (1 x 2) (2) (4 x 1) (4) √√ (2 x 1) (2) isture
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with more from the ocean√. There is therefore no longer condensation and a supply	the (2 x 1) (2) the (1 x 2) (2) (4 x 1) (4) $\sqrt[4]{}$ $\sqrt[4]{}$ (2 x 1) (2) isture / of
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with more from the ocean√. There is therefore no longer condensation and a supply latent heat to provide energy for the system√. Friction with the land will a	ie (2 x 1) (2) ne (1 x 2) (2) (4 x 1) (4) √√ (2 x 1) (2) isture / of Iso
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{7}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with mo from the ocean√. There is therefore no longer condensation and a supply latent heat to provide energy for the system√. Friction with the land will a cause the winds to slow down and weaken Coriolis force√. The air will me	the $(2 \times 1) (2)$ $(1 \times 2) (2)$ $(4 \times 1) (4)$ $\sqrt[]{} \sqrt[]{} \sqrt[$
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{10}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with mo from the ocean√. There is therefore no longer condensation and a supply latent heat to provide energy for the system√. Friction with the land will a cause the winds to slow down and weaken Coriolis force√. The air will mit towards the central low pressure√, and pressure in the centre of the hurried will at the rise a ¹ .	$ \begin{array}{c} \text{ie} \\ (2 \times 1) (2) \\ \text{ie} \\ (1 \times 2) (2) \\ (4 \times 1) (4) \\ \sqrt[4]{} \\ \sqrt[4]{} \\ \sqrt[4]{} \\ (2 \times 1) (2) \\ \text{isture} \\ \text{isture} \\ \text{iso} \\ \text{ove} \\ \text{cane} \\ \end{array} $
 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 	10√ as hurricanes are named alphabetically from the start of the hurrican season. K is the eleventh letter of the alphabet.√ The cloud cover indicates an anti-clockwise convergence of air towards the eye $\sqrt{\sqrt{10}}$ The sky is clear√; it is warm and calm√. This is because divergence in the upper atmosphere√ causes air to descend in the eye.√ The hurricane has come from the south-east. It has therefore moved in a north-westerly direction. It will now begin to veer towards the north-east. Hurricane Katrina will start to dissipate as it is no longer supplied with mo from the ocean√. There is therefore no longer condensation and a supply latent heat to provide energy for the system√. Friction with the land will a cause the winds to slow down and weaken Coriolis force√. The air will m towards the central low pressure√, and pressure in the centre of the hurrie will start to rise.√	$\begin{array}{c} (2 \times 1) (2) \\ (2 \times 1) (2) \\ (1 \times 2) (2) \\ (4 \times 1) (4) \\ \sqrt{4} \\ (2 \times 1) (2) \\ \sqrt{4} \\ (2 \times 1) (2) \\ \sqrt{6} \\ $

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

GEOG	RAPHY	GRADE 12	SESSION 9	(HOMEWORK SOLUTIONS)
1.3 1.3.1	Two√√ Divide the total leng	ith of all the stread	ms in the basin by th	(1 x 2) (2)
1.3.2		fill of all the strea		(1 x 2) (2)
1.3.3	$F2\sqrt{as}$ it has a narr	ow valley with ste	eep sides√√	(1+1 x 2) (3)
1.3.4	Radial pattern \sqrt{as}	the streams woul	ld radiate outwards fr	om the koppie
				(1+1 x 2) (3)
				[10]
				TOTAL: [40]

QUESTION 2

2.1		
2.1.1	Inter-Tropical Convergence Zone√	(1)
2.1.2	Intense radiational heating and strong convergence of the tropical	
	easterlies√√	(1 x 2) (2)
2.1.3	Tropical easterlies√	(1)
2.1.4	Cumulonimbus√	(1)
2.1.5	Hadley cell√	(1)
2.1.6	Northern hemisphere $\sqrt{1}$ as it is June and therefore it is summer in the	
	Northern hemisphere. The ITCZ lies over Kano $$	(2 x 1) (2)
2.1.7	D has little rain as it lies in the area of the sub-tropical high pressures	
	where air is descending and heating adiabatically $\sqrt{}$	(1 x 2) (2)
		[10]

2.2

∠ .∠		
2.2.1	A – trough of low pressure($\frac{1}{2}$); B – ridge of high pressure($\frac{1}{2}$); C - warm fr	ont(1⁄2);
	D – cold front($\frac{1}{2}$); E – occluded front($\frac{1}{2}$); F – coastal low pressure($\frac{1}{2}$);	
	G – saddle of pressure($\frac{1}{2}$); H – isobar (1016 hPa) ($\frac{1}{2}$)	(8 x ½) (4)
2.2.2	X – South Indian high pressure $\sqrt{2}$; Y – South Atlantic high pressure $\sqrt{2}$	(2×1) (2)
2.2.3	Sub-tropical high-pressure√	(1)
2.2.4	Air subsides in an anti-clockwise direction, and diverges from the high	
	pressure. $\sqrt{\sqrt{1}}$ There will be no cloud cover owing to the adiabatic heating	
	of the air $\sqrt{}$	(2 x 2) (4)
2.2.5	Air temperature and dewpoint are both $17^{\circ}C(2x^{1/2})$, and so there is fog or	
	mist($\frac{1}{2}$) as the air is saturated; the sky is totally overcast($\frac{1}{2}$); there is a	
	SE wind($\frac{1}{2}$) of 25 knots($\frac{1}{2}$).	(6 x ½) (3)
2.2.6	The trough of low pressure over the land $$, the southerly position of the S	outh
	Indian high pressure, and the more southerly position of the frontal depre	ssions√
		(2 x 1) (2)
227	It is a frontal depression or mid latitude $cyclone \sqrt{-1}$ It will move in an easter	rly

2.2.7 It is a frontal depression or mid-latitude cyclone $\sqrt{}$. It will move in an easterly direction $\sqrt{}$ as it is carried by the westerly winds $\sqrt{}$. (3)

GEOGRAPHY

GRADE 12

SESSION 9

(HOMEWORK SOLUTIONS)

2.2.8

(5) **[24]**

2.3

- 2.3.1 (a) a longitudinal profile shows a section of the river from its source to its mouth. \surd
 - (b) Local base level is the temporary limit to the vertical erosion of the river, e.g. Lake Mwera and Lake Bangwuelu. √ It can also be a resistant rock structure across the course of the river. (2 x 1) (2)
- 2.3.2 A turbulent flow because of the steep slopes and uneven bed of the river, which are found in the upper course of the river $\sqrt{\sqrt{}}$
 - B laminar flow as the slope is gentle and the bed is more even. There is less friction, and the water flows in layers – fastest in the middle, and slower next to the river bed. $\sqrt{\sqrt{}}$ (2 x 2) (4)
- 2.3.3 Steep gradient and, therefore, greater water speeds to drive the turbines $\sqrt{}$ Constant flow of water, as this is a permanent river. $\sqrt{}$ (2 x 1) (2)

GAUTENG DEPARTMENT OF EDUCATION

The SSIP is supported by

GEOGRAPHY GRADE 12 SESSION 10 (HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 10

TOPIC: CLIMATOLOGY, GEOMORPHOLOGY AND GIS: CONSOLIDATION EXERCISES

QUESTION 1

1.1

1.1.1	The slopes of the valley are warmer at night. The valley floor has frost owing to katabatic airflow and the formation of the temperature inversion. Mid-slope lies in the warm thermal belt. $\sqrt{\sqrt{1-1}}$	(1 x 2) (2)
1.1.2	Air close to the valley floor cools at night, reaches dew point temperature, and results in condensation. $\sqrt[.]{}\sqrt[.]{}$ Fog mixes with smoke to form smog. $\sqrt[.]{}\sqrt[.]{}$	(2 x 2) (4)
1.1.3	Factories lie south of Hartsworth. $\sqrt{}$ In the afternoon a valley or an anabatic wind causes pollution to be blown northwards. $\sqrt{}$	(2 x 2) (4)
1.1.4	These areas lie in the warm thermal belt, and are warmer than the valley floor in winter. $\sqrt[4]{}$ The areas are out of the valley, and are not affected by smog. $\sqrt[4]{}$	(1 x 2) (2)
1.1.5	Human activities, for example, industry, create heat. $\sqrt{\sqrt{1}}$ Tarred roads absorb heat. $\sqrt{\sqrt{1}}$ Evaporation cooling occurs in the rural areas. $\sqrt{\sqrt{1}}$ A pollution blanket traps radiation from the earth's surface. $\sqrt{\sqrt{1}}$ Building cause a multiple reflection of heat. $\sqrt{\sqrt{1}}$ Buildings increase the surface area, which is heated $\sqrt{\sqrt{1}}$	
	[Any THREE]	(3 x 2) (6) [18]
1.2 1.2.1 1.2.2 1.2.3 1.2.4	ITCZ. $\sqrt{\sqrt{10}}$ Equatorial low pressure. $\sqrt{\sqrt{10}}$ The sub-tropical high pressure. $\sqrt{\sqrt{10}}$ The land is cold in winter, but the ocean is warm. $\sqrt{\sqrt{10}}$ This reinforces the existence of the sub-tropical high pressure over	(1 x 2) (2) (1 x 2) (2) (1 x 2) (2)
	the land, but there is a lower pressure over the ocean. $\sqrt{}$	(2 x 2) (4) [10]

SENIOR SECONDARY INTERVENTION PROGRAMME

GEOGRAPHY	GRADE 12	SESSION 10	(HOMEWORK SOLUTIONS)
1.3			

1.3.1 A.√√

1.3.2

(1 x 2) (2)

(1+3)(4)

[22] [50]

		Warm front	Cold front	
Steepness	3	Gradual√	Steep√	
Cloud type	es	Ci, Cs, As, Ns√	Cb√	
Rainfall		Gentle, over wide area $$	Intense, over small area $$	
			(3 x 2) (6)	
1.3.3 Wa	rm sector√√		(1 x 2) (2)	
1.3.4 Warm front $\sqrt{}$			(1 x 2) (2)	
1.3.5 E-	cool, 9°C $$, cloudy $$,	gentle rain√		
D –	warm, 15°C√, clear	√, sunny√	(3 x 2) (6)	
1.3.6 The star The the	3.6 The warm sector narrows $\sqrt{.}$ The cold front overtakes the warm front – starting in the LP centre and then moves progressively outwards. $\sqrt{.}$ The cold air wedges in under the warm air and isolates the warm air from the earth's surface. $\sqrt{.}$ The process is called occlusion and the front which			

QUESTION 2

is formed is called an occlusion front. $\sqrt{}$

2.1.1 Temporary base level: the level to which the stream can erode while the irregularity across its course still exists. The stream cannot erode below the level of the waterfall until the waterfall has been eroded away and a smooth concave profile is created. $\sqrt{\sqrt{}}$

Stream braiding: as the stream flows onto its developing floodplain, its velocity decreases and the stream loses energy and deposits its load. Some of this deposition may form islands in the channel, and the stream becomes braided. $\sqrt{\sqrt{}}$

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME SESSION 10 **GEOGRAPHY GRADE 12** (HOMEWORK SOLUTIONS) No $\sqrt{\sqrt{-}}$ a graded profile is a smooth concave profile with no irregularities (b) along the course. In this profile the waterfall causes an irregularity. $\sqrt{\sqrt{1-1}}$ $(2 \times 2) (4)$ 2.1.3 Rejuvenation is a revival of a stream's ability to erode vertically. $\sqrt{\sqrt{3}}$ (a) $(1 \times 2) (2)$ (b) river channel river channel terrace terrace river cuts into floodplain Rejuvenation – the river erodes Before rejuvenation the river vertically erodes laterally $(2 \times 3) (6)$ [20] 2.2 2.2.1 15h00√√ $(1 \times 2) (2)$ 2.2.2 7-8 cumecs $\sqrt{\sqrt{}}$ $(1 \times 2) (2)$ 2.2.3 32 – 33 cumecs $\sqrt{\sqrt{}}$ $(1 \times 2) (2)$ 2.2.4 8 – 9 hours $\sqrt{\sqrt{}}$ $(1 \times 2) (2)$ $(1 \times 2) (2)$

- 2.2.5 12 13 hours $\sqrt{\sqrt{}}$
- 2.3
- 2.3.1 Although the gradient is steeper at A, the channel is small and there is little volume. The friction index will be high, and the river will use a lot of its energy to overcome friction. The flow will, therefore, not be fast, and the river will not have a lot of energy to cause erosion of the channel $\sqrt{\sqrt{}}$ At channel B, the gradient is more gradual, but the channel is larger and probably deeper. There will be more water in the channel as the water from the tributaries has been added to the main stream. There will be less friction, and so the river will have more energy and will flow faster. This will result in erosion of the channel $\sqrt{\sqrt{}}$ $(2 \times 2) (4)$ 2.3.2 There is bare soil at $C\sqrt{\sqrt{}}$, and sheet flow will carry silt into the river $\sqrt{\sqrt{}}$ $(2 \times 2) (4)$ The volume will increase downstream of $D\sqrt{\sqrt{}}$, as the concrete and 2.3.3 tar of the urban area will result in less infiltration of rain, and this water will flow into the river $\sqrt{\sqrt{}}$ $(2 \times 2) (4)$ Energy will increase if there is deforestation as the volume of the river 2.3.4 will increase as there will be greater run-off and less infiltration. $\sqrt{\sqrt{1-1}}$ $(1 \times 2) (2)$ [14] 2.4 $(1 \times 2) (2)$ 2.4.1 Meandering $\sqrt{\sqrt{}}$ 2.4.2 The stronger current swings to the outer bend, and erosion is greatest here. Undercutting and the collapse of the river bank from an undercut slope or river cliff. $\sqrt{\sqrt{}}$ The water is deepest here, and the flow is fastest $\sqrt{\sqrt{3}}$ $(2 \times 2) (4)$ [6]

[50]

[10]

GAUTENG DEPARTMENT OF EDUCATIO	ON SENIOR SECONDARY INTERVEN	SENIOR SECONDARY INTERVENTION PROGRAMME		
GEOGRAPHY GRADE 12	2 SESSION 11	(TEACHER NOTES		
HOMEWORK SOLUTIONS: SESS	SION 11			
TOPIC1: CLIMATOLOGY, GEOM EXERCISES	ORPHOLOGY AND MAPWORK CO	NSOLIDATION		
QUESTION 1				
1.1				
1.1.1 D_{VV} 1.1.2 D_{VV}				
1.1.3 D √√				
1.1.4 B √√ 1.1.5 A √√		(5 x 2) (10)		
1.2		(0) (1.0)		
1.2.1 A = Crest \sqrt{B} = Free face \sqrt{C}	C= Talus√ D= Pediment√	(4 x 1) (4)		
1.2.2 Any ONE Usually at 35° (angle of repos	e) VV			
Consists of shattered rock fra	gments√√	(1 x 2) (2)		
1.2.3 Mass wasting / rock falls $\sqrt{12}$		(1 X 2) (2)		
1	sisted erosion $\sqrt{\sqrt{2}}$ or sea level droppe	(2 x 1) (2) ed√√		
and level rose $\sqrt{1}$.		(3 x 2) (6)		
1.3 1.3.1 $C\sqrt{\sqrt{13.2}}$ 1.3.2 $A\sqrt{\sqrt{13.3}}$ 1.3.3 $C\sqrt{\sqrt{13.3}}$ 1.3.4 $B\sqrt{\sqrt{13.3}}$ 1.3.5 $B\sqrt{\sqrt{13.3}}$				
1.3.6 BVV 1.3.7 D√√		(7 x 2) (14)		
		[40]		
QUESTION 2				
2.1				
2.1.1 Abstraction $\sqrt{}$ 2.1.2 Angle of repose (±34°) $\sqrt{}$ 2.1.3 Weathering $\sqrt{}$ 2.1.4 Exotic stream $\sqrt{}$				

2.1.5 Aquifer $\sqrt{\sqrt{}}$

(5 x 2) (10)

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INTERVENTION PROGRAMME			
GEOGRAPHY GRADE 12		SESSION 11	(TEACHER NOTES)		
2.2					
2.2.1	Main river and its	tributaries collec	tively $\sqrt{}$	[Concept]	(1 x 2) (2)
2.2.2	 (a) <u>Impermeable b</u> More water flow (b) <u>Dense vegetati</u> Less water/less 	<u>edrock</u> ving/higher run-c i <u>on</u> s run-off because	off because of less infiltration $$	ition $$	(2)
2.2.3	3^{rd} order $$				(1 x 2) (2)
2.2.4	The underlying roc horizontal strata √ Stream flow not de Thinning/erosion o River maintained in Accept definition if	ks are inclined w etermined by unc of underlying rock ts course √ f evidence of sup	while the dendritic pattern derlying rock structure $\sqrt{1}$ structure $\sqrt{1}$ structure $\sqrt{1}$ berimposed stream is give [Any	is associated w en √ ONE]	rith (1)
2.2.5	About 2,5 to 3,5 ho	ours $$			(1)
2.2.6	E Lag time reduced/ Flood peak higher The hydrograph w Flood peak will be Removal of vegeta More water will rea Less retention ther An urban settlem landscape where t Urban developmen The urban settlem retain water $\sqrt{}$ More water reacher The flood peak will rate $\sqrt{}$ Artificial surfaces r	shorter $\sqrt{\sqrt{10}}$ ill change to a shorter $\sqrt{\sqrt{10}}$ ill change to a short reached in a short ation increases ru ach the stream m refore water reach nent increases he infiltration is h nt could increase nent has an arti- es the stream $\sqrt{\sqrt{10}}$ Il last for a shorter reduce friction so words/phrases us	harply rising limb $\sqrt[4]{}$ orter space of time $\sqrt[4]{}$ nuch quicker thus reducin ches the stream quicker $\sqrt[4]{}$ surface run-off compar- higher $\sqrt[4]{}$ e rainfall (more hygroscop ficial surface (tar, concre- ficial surface (tar, concre- er space of time because o water flows faster $\sqrt[4]{}$ [Any sed ONE mark. If full sent	g lag time $\sqrt{\sqrt{100}}$ ed to the exinic nuclei) $\sqrt{\sqrt{100}}$ ete) which does of the quick ru SIX] tences	isting s not ın-off (6 x 2) (12)
2.3. 2.3 1	A = dendritic $\sqrt{}$	B = trellis√√			$(2 \times 2) (4)$
2.3.2	A – uniform resista B – folded sedime	ant rock, usually ntary rock $\sqrt{}$	flat / horizontal sedimenta	ary rock√√	(2 x 2) (4)